Lq dimensions and projections of random measures
We prove preservation of Lq dimensions (for ) under all orthogonal projections for a class of random measures on the plane, which includes (deterministic) homogeneous self-similar measures and a well-known family of measures supported on 1-variable fractals as special cases. We prove a similar resul...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
Institute of Physics Publishing
2016
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 07383caa a22007217a 4500 | ||
|---|---|---|---|
| 001 | PAPER-24463 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205619.0 | ||
| 008 | 190411s2016 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84987968032 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Galicer, D. | |
| 245 | 1 | 0 | |a Lq dimensions and projections of random measures |
| 260 | |b Institute of Physics Publishing |c 2016 | ||
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Almarza, J., CP-chains and dimension preservation for projections of (×m,×n)-invariant Gibbs measures (2016) Adv. Math., , at press (arXiv:1410.5086v2) | ||
| 504 | |a Barnsley, M.F., Hutchinson, J.E., Stenflo, O., V-variable fractals: Fractals with partial self similarity (2008) Adv. Math., 218, pp. 2051-2088. , 2051-88 | ||
| 504 | |a De, A., Moreira, C.G.T., Sums of regular Cantor sets, dynamics and applications to number theory (1998) Period. Math. Hungar., 37, pp. 55-63. , 55-63 (Int. Conf. on Dimension and Dynamics (Miskolc, 1998)) | ||
| 504 | |a Diestel, J., (1984) Sequences and Series in Banach Spaces, 92. , (Graduate Texts in Mathematics) (New York: Springer) | ||
| 504 | |a Edgar, G.A., (1998) Integral, Probability, and Fractal Measures, , (New York: Springer) | ||
| 504 | |a Einsiedler, M., Ward, T., (2011) Ergodic Theory with A View Towards Number Theory, 259. , (Graduate Texts in Mathematics) (London: Springer) | ||
| 504 | |a Falconer, K.J., Jin, X., Exact dimensionality and projections of random self-similar measures and sets (2014) J. Lond. Math. Soc., 90, pp. 388-412. , 388-412 | ||
| 504 | |a Fan, A.H., Lau, K.S., Rao, H., Relationships between different dimensions of a measure (2002) Monatsh. Math., 135, pp. 191-201. , 191-201 | ||
| 504 | |a Farkas, A., Projections of self-similar sets with no separation condition (2014) Isr. J. Math., , http://arxiv.org/abs/1307.2841v3 | ||
| 504 | |a Ferguson, A., Fraser, J., Sahlsten, T., Scaling scenery of (×m,×n)-invariant measures (2015) Adv. Math., 268, pp. 564-602. , 564-602 | ||
| 504 | |a Ferguson, A., Jordan, T., Shmerkin, P., The Hausdorff dimension of the projections of self-affine carpets (2010) Fund. Math., 209, pp. 193-213. , 193-213 | ||
| 504 | |a Furman, A., On the multiplicative ergodic theorem for uniquely ergodic systems (1997) Ann. Inst. Henri Poincaré, 33, pp. 797-815. , 797-815 | ||
| 504 | |a Hambly, B.M., Brownian motion on a homogeneous random fractal (1992) Probab. Theory Relat. Fields, 94, pp. 1-38. , 1-38 | ||
| 504 | |a Hochman, M., Shmerkin, P., Local entropy averages and projections of fractal measures (2012) Ann. Math., 175, pp. 1001-1059. , 1001-59 | ||
| 504 | |a Hochman, M., On self-similar sets with overlaps and inverse theorems for entropy (2014) Ann. Math., 180, pp. 773-822. , 773-822 | ||
| 504 | |a Hunt, B.R., Kaloshin, V.Y., How projections affect the dimension spectrum of fractal measures (1997) Nonlinearity, 10 (5), pp. 1031-1046. , 1031-46 | ||
| 504 | |a Katznelson, Y., Weiss, B., A simple proof of some ergodic theorems (1982) Isr. J. Math., 42, pp. 291-296. , 291-6 | ||
| 504 | |a Keynes, H.B., Newton, D., Ergodic measures for non-abelian compact group extensions (1976) Compos. Math., 32, pp. 53-70. , 53-70 | ||
| 504 | |a Mattila, P., (1995) Geometry of Sets and Measures in Euclidean Spaces, , (Cambridge Studies in Advanced Mathematics vol 44) (Cambridge: Cambridge University Press) (Cambridge Fractals and rectifiability) | ||
| 504 | |a Nazarov, F., Peres, Y., Shmerkin, P., Convolutions of Cantor measures without resonance (2012) Isr. J. Math., 187, pp. 93-116. , 93-116 | ||
| 504 | |a Parry, W., Skew products of shifts with a compact Lie group (1997) J. Lond. Math. Soc., 56, pp. 395-404. , 395-404 | ||
| 504 | |a Peres, Y., Shmerkin, P., Resonance between Cantor sets (2009) Ergod. Theor. Dynam. Syst., 29, pp. 201-221. , 201-21 | ||
| 504 | |a Peres, Y., Solomyak, B., Existence of Lq dimensions and entropy dimension for self-conformal measures (2000) Indiana Univ. Math. J., 49, pp. 1603-1621. , 1603-21 | ||
| 504 | |a Shmerkin, P., Projections of self-similar and related fractals: A survey of recent developments (2015) Fractal Geometry and Stochastics v, pp. 53-74. , Shmerkin P (Progress in Probability) ed C Bandt et al (Cham: Birkhadie;user) pp 53-74 | ||
| 504 | |a Shmerkin, P., Solomyak, B., Absolute continuity of self-similar measures, their projections and convolutions (2016) Trans. Am. Math. Soc., 368, pp. 5125-5151. , 5125-51 | ||
| 504 | |a Stenflo, O., Markov chains in random environments and random iterated function systems (2001) Trans. Am. Math. Soc., 353, pp. 3547-3562. , 3547-62 (electronic) | ||
| 520 | 3 | |a We prove preservation of Lq dimensions (for ) under all orthogonal projections for a class of random measures on the plane, which includes (deterministic) homogeneous self-similar measures and a well-known family of measures supported on 1-variable fractals as special cases. We prove a similar result for certain convolutions, extending a result of Nazarov, Peres and Shmerkin. Recently many related results have been obtained for Hausdorff dimension, but much less is known for L q dimensions. © 2016 IOP Publishing Ltd & London Mathematical Society. |l eng | |
| 536 | |a Detalles de la financiación: PICT 2011-1456, PICT 2012-2744, PICT 2013-1393, PIP 0624, UBACyT 20020130300057BA, UBACyT 200120120100151GC, PICT 2011-4036 | ||
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PIP 11220110101018, UBACyT 2014-2017 20020130100403BA | ||
| 536 | |a Detalles de la financiación: DG was supported by projects CONICET PIP 0624, PICT 2011-1456 and UBACyT 20020130300057BA. SS was supported by projects PICT 2012-2744 and UBACyT 200120120100151GC. PS was supported by projects PICT 2011-4036 and PICT 2013-1393 (ANPCyT). AY was supported by projects UBACyT 2014-2017 20020130100403BA and PIP 11220110101018 (CONICET) | ||
| 593 | |a Departamento de Matemática, IMAS/CONICET, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, Buenos Aires, 1428, Argentina | ||
| 593 | |a Departamento de Matemáticas y Estadísticas, CONICET, Universidad Torcuato di Tella, Av. Figueroa Alcorta 7350, Buenos Aires, C1428BCW, Argentina | ||
| 690 | 1 | 0 | |a CONVOLUTIONS |
| 690 | 1 | 0 | |a LQ DIMENSIONS |
| 690 | 1 | 0 | |a PROJECTIONS |
| 690 | 1 | 0 | |a RANDOM MEASURES |
| 690 | 1 | 0 | |a SELF-SIMILAR MEASURES |
| 700 | 1 | |a Saglietti, S. | |
| 700 | 1 | |a Shmerkin, P. | |
| 700 | 1 | |a Yavicoli, A. | |
| 773 | 0 | |d Institute of Physics Publishing, 2016 |g v. 29 |h pp. 2609-2640 |k n. 9 |p Nonlinearity |x 09517715 |w (AR-BaUEN)CENRE-381 |t Nonlinearity | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987968032&doi=10.1088%2f0951-7715%2f29%2f9%2f2609&partnerID=40&md5=e690a466bc141bc79ec641ca2876639e |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1088/0951-7715/29/9/2609 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_09517715_v29_n9_p2609_Galicer |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09517715_v29_n9_p2609_Galicer |y Registro en la Biblioteca Digital |
| 961 | |a paper_09517715_v29_n9_p2609_Galicer |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 85416 | ||