An ostracod-based calibration function for electrical conductivity reconstruction in lacustrine environments in Patagonia, Southern South America

In the Patagonian region (∼37-56°S) E of the Andes, the salinity and solute composition of lakes is strongly related to their location along the marked W-E decreasing precipitation gradient that is one of the main climatic features of the area. A calibration function (n = 34) based on 12 ostracod sp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ramón Mercau, J.
Otros Autores: Laprida, C.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Elsevier B.V. 2016
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17301caa a22014417a 4500
001 PAPER-24440
003 AR-BaUEN
005 20230518205618.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84973474070 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Ramón Mercau, J. 
245 1 3 |a An ostracod-based calibration function for electrical conductivity reconstruction in lacustrine environments in Patagonia, Southern South America 
260 |b Elsevier B.V.  |c 2016 
270 1 0 |m Ramón Mercau, J.; Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET), Intendente Güiraldes 2160 (Ciudad Universitaria)Argentina; email: jrm@gl.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Baigún, C., Marinone, M.C., Cold-temperate lakes of South America: Do they fit Northern Hemisphere models? (1995) Arch. Hydrobiol., 135 (1), pp. 23-51 
504 |a Birks, H.J.B., Heiri, O., Seppä, H., Bjune, A.E., Strengths and weaknesses of quantitative climate reconstructions based on late-quaternary biological proxies (2010) Open Ecol. J., 3, pp. 68-110 
504 |a Coronato, A.M., The physical geography of Patagonia and Tierra del Fuego (2008) Late Cenozoic of Patagonia and Tierra Del Fuego. Developments in Quaternary Sciences, 11, pp. 13-55. , Rabassa, J 
504 |a Cusminsky, G.C., Whatley, R., Quaternary non-marine ostracods from lake beds in northern Patagonia (1996) Rev. Esp. Paleontol., 11, pp. 143-154 
504 |a Cusminsky, G.C., Pérez, P.A., Schwalb, A., Whatley, R.C., Recent lacustrine ostracods from Patagonia, Argentina (2005) Rev. Esp. Micropaleontol., 37, pp. 431-450 
504 |a Cusminsky, G.C., Schwalb, A., Pérez, P.A., Pineda, D., Viehberg, F., Whatley, R.C., Markgraf, V., Anselmetti, F.S., Late quaternary environmental changes in Patagonia as inferred from lacustrine fossil and extant ostracods (2011) Biol. J. Linn. Soc., 103, pp. 397-408 
504 |a Daday, E., Mikroskopische-Susswasserthiere aus Patagonia - Gesammelt von Dr Filippo Silvestri (1902) Természetrajzi Füzetek, 25, pp. 20-310 
504 |a Díaz, A.R., Martens, K., On Argentocypris sara gen. Nov., sp: Nov. (Ostracoda) from the Patagonian wetlands of Argentina (2014) Crustaceana, 87 (5), pp. 513-530 
504 |a Díaz, M., Pedrozo, F., Baccala, N., Summer classification of Southern Hemisphere temperate lakes (Patagonia, Argentina) (2000) Lakes Reserv.: Res Manage., 5, pp. 213-229 
504 |a Díaz, M., Pedrozo, F., Reynolds, C., Temporetti, P., Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes (2007) Limnol. Ecol. Manag. Inland Waters, 37 (1), pp. 17-27 
504 |a De Deckker, P., Ostracod palaeoecology (2002) The Ostracoda: Applications in Quaternary Research, pp. 6-36. , J.A. Holmes, A. Chivas, American Geophysical Union Washington, D.C 
504 |a Delorme, L.D., Paleoecological determinations using Pleistocene freshwater ostracodes (1971) Bulletin du Centre de Recherches de Pau/Société Nationale des Pétroles d'Aquitaine, 5, pp. 341-347 
504 |a Eugster, H.P., Hardie, L.A., Saline lakes (1978) Lakes - Chemistry, Geology, Physics, pp. 237-293. , A. Lerman, Springer New York New York 
504 |a Fritz, S.C., Juggins, S., Battarbee, R.W., Engstrom, D.R., Reconstruction of past changes in salinity and climate using a diatom-based transfer function (1991) Nature, 352, pp. 706-708 
504 |a Garreaud, R., López, P., Minvielle, M., Rojas, M., Large-scale control on the Patagonian climate (2013) J. Clim., 26, pp. 215-230 
504 |a Gasse, F., Barker, P., Gell, P.A., Fritz, S.C., Chalie, F., Diatom-inferred salinity in palaeolakes: An indirect tracer of climate change (1997) Quat. Sci. Rev., 16 (6), pp. 547-563 
504 |a Gouramanis, C., Wilkins, D., De Deckker, P., 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry (2010) Palaeogeography Palaeoclimatology Palaeoecology, 297 (1), pp. 223-237 
504 |a Hardie, L.A., Smoot, J.P., Eugster, H.P., Saline lakes and their deposits: A sedimentological approach (1978) Modern and Ancient Lake Sediments, 2, pp. 7-42. , A. Matter, M.E. Tucker, Special Publication of the International Association of Sedimentologists 
504 |a Herbst, H.V., Neue Cypridae (Crustacea, Ostracoda) aus Australien: I (1958) Zool Anz., 160, pp. 177-192 
504 |a Juggins, S., Birks, H.J.B., Quantitative Environmental Reconstructions from Biological Data (2012) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, 5, pp. 431-494. , Birks, J.B.H., Lotter, A.F., Juggins, S., Smol, J.P 
504 |a Juggins, S., (2003) C2 User Guide: Software for Ecological and Palaeoecological Data Analysis and Visualization, p. 69. , University of Newcastle Newcastle-upon-Tyne, England 
504 |a Juggins, S., Quantitative reconstructions in palaeolimnology: New paradigm or sick science? (2013) Quat. Sci. Rev., 64, pp. 20-32 
504 |a Karanovic, I., (2012) Recent Freshwater Ostracods of the World: Crustacea, Ostracoda, Podocopida, p. 610. , Springer 
504 |a Kemp, J., Radke, L.C., Olley, J., Juggins, S., De Deckker, P., Holocene lake salinity changes in the Wimmera, southeastern Australia, provide evidence for millennial-scale climate variability (2012) Quat. Res., 77 (1), pp. 65-76 
504 |a Kidwell, S.M., Bosence, D.W., Taphonomy and time-averaging of marine shelly faunas (1991) Taphonomy: Releasing the Data Locked in the Fossil Record, pp. 115-209. , P.A. Allison, D.E.G. Briggs, Plenum Press New York 
504 |a Kilian, R., Lamy, F., A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49-55 S) (2012) Quat. Sci. Rev., 53, pp. 1-23 
504 |a Massaferro, J., Larocque-Tobler, I., Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina (2013) Ecol. Indic., 24, pp. 201-210 
504 |a Mayr, C., Laprida, C., Lücke, A., Martín, R.S., Massaferro, J., Ramón Mercau, J., Wissel, H., Oxygen isotope ratios of chironomids, aquatic macrophytes and ostracods for lake-water isotopic reconstructions - Results of a calibration study from Patagonia (2015) J. Hydrol., 529 (2), pp. 600-607 
504 |a Meisch, C., Freshwater Ostracoda of Western and Central Europe (2000) Suesswasserfauna von Mitteleuropa 8/3, p. 22. , J. Schwoerbel, P. Zwick, Spektru Akademischer Verlag 
504 |a Mischke, S., Herzschuh, U., Massmann, G., Zhang, C., An ostracod-conductivity transfer function for Tibetan lakes (2007) J. Paleolimnol., 38 (4), pp. 509-524 
504 |a Mourguiart, P., Roux, M., A new strategy for paleolake level reconstructions: Transfer function use based on ostracods (1990) Geodynamique, 5, pp. 151-165 
504 |a Neale, J.W., Ostracods and palaeosalinity reconstruction (1988) Ostracoda in Earth Sciences, p. 302. , P. De Deckker, J.P. Colin, J.P. Peypouquet, Elsevier 
504 |a Ohlendorf, C., Fey, M., Massaferro, J., Haberzettl, T., Laprida, C., Lücke, A., Maidana, N., Zolitschka, B., Late Holocene hydrological history inferred from the sediments of Laguna Cháltel (southeastern Argentina) (2014) Palaeogeography Palaeoclimatology Palaeoecology, 411, pp. 229-248 
504 |a Park, L.E., Cohen, A.S., Martens, K., Bralek, R., The impact of taphonomic processes on interpreting paleoecologic changes in large lake ecosystems: Ostracodes in Lakes Tanganyika and Malawi (2003) J. Paleolimnol., 30 (2), pp. 127-138 
504 |a Paruelo, J.M., Beltrán, A., Jobbágy, E., Sala, O.E., Golluscio, R.A., The climate of Patagonia: General patterns and controls on biota (1998) Ecol. Austral, 8, pp. 85-101 
504 |a Purper, I., Würdig, N.L., Occurrence of Heterocypris incongruens (Ramdhor) Ostracoda in Rio Grande do Sul, Brazil (1974) Discussion of the Allied Genera: Cyprinotus, Eucypris, Heterocypris and Homocypris, 1, pp. 69-91. , Pesquisas 
504 |a Ramón Mercau, J., Laprida, C., Massaferro, J., Rogora, M., Tartari, G., Maidana, N.I., Freshwater Patagonian ostracods and hydrochemical characteristics of Southern Patagonian lakes (Argentina): Implications for paleoenvironmental reconstructions (2012) Hydrobiologia, 694, pp. 235-251 
504 |a Reed, J.M., Mesquita-Joanes, F., Griffiths, H.I., Multi-indicator conductivity transfer functions for quaternary palaeoclimate reconstruction (2012) J. Paleolimnol., 47 (2), pp. 251-275 
504 |a Rossetti, G., Martens, K., Taxonomic revision of the recent and Holocene representatives of the family Darwinulidae (Crustacea, Ostracoda), with a description of three new genera (1998) Bulletin de l'Institut Royal des Sciences Naturelles de Belgique, 68, pp. 55-110 
504 |a Schäbitz, F., Wille, M., Francois, J.-P., Haberzettl, T., Quintana, F., Mayr, C., Lücke, A., Zolitschka, B., Reconstruction of palaeoprecipitation based on pollen transfer functions -the record of the last 16 ka from Laguna Potrok Aike, southern Patagonia (2013) Quat. Sci. Rev., 71, pp. 175-190 
504 |a Smol, J.P., Birks, H.J.B., Lotter, F., Juggins, S., The March towards the quantitative analysis of palaeolimnological data (2012) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, 5, pp. 3-17. , Birks, J.B.H., Lotter, A.F., Juggins, S., Smol, J.P 
504 |a Tonello, M.S., Mancini, M.V., Seppä, H., Quantitative reconstruction of Holocene precipitation changes in southern Patagonia (2009) Quat. Res., 72 (3), pp. 410-420 
504 |a Van Bellen, S., Mauquoy, D., Payne, R.J., Roland, T.P., Daley, T.J., Hughes, P.D.M., Loader, N.J., Pancotto, V.A., Testate amoebae as a proxy for reconstructing Holocene water table dynamics in southern Patagonian peat bogs (2014) J. Quat. Sci., 29, pp. 463-474 
504 |a Van Der Meeren, T., Mischke, S., Sunjidmaa, N., Herzschuh, U., Ito, E., Martens, K., Verschuren, D., Subfossil ostracode assemblages from Mongolia - Quantifying response for paleolimnological applications (2012) Ecol. Indic., 14 (1), pp. 138-151 
504 |a Vávra, W., Sásswasser-Ostracoden der Hamburger Magalhaensische Sammelreise 1892-1893 (1898) Naturhist. Mus. Hamburg, 2 (3), pp. 1-26 
504 |a Viehberg, F.A., Mesquita-Joanes, F., Quantitative transfer function approaches in palaeoclimatic reconstruction using Quaternary ostracods (2012) Ostracoda As Proxies for Quaternary Climate Change. Developments in Quaternary Sciences, 17, pp. 47-64. , Horne, D., Holmes, J., Viehberg F., Rodríguez-Lázaro, J 
504 |a Ter Braak, C.J.F., Šmilauer, P., (2012) CANOCO Reference Manual and User's Guide: Software for Ordination, Version 5.0, p. 496. , Microcomputer Power Ithaca, USA 
504 |a Ter Braak, C.J.F., Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis (1986) Ecology, 67 (5), pp. 1167-1179 
504 |a (1969) Quality Aspects of Farm Water Supplies, p. 44. , Report prepared by Victorian Irrigation Research and Advisory Services Committee Melbourne 
520 3 |a In the Patagonian region (∼37-56°S) E of the Andes, the salinity and solute composition of lakes is strongly related to their location along the marked W-E decreasing precipitation gradient that is one of the main climatic features of the area. A calibration function (n = 34) based on 12 ostracod species (Ostracoda, Crustacea) was developed by WA-PLS to quantitatively reconstruct electrical conductivity (EC) values as a salinity proxy. The selected one component model had a r2 = 0.74 and RMSEP and maximum bias equal to 16% and 31% of the sampled range, respectively, comparable to other published ostracod-based calibration functions. This model was applied to the ostracod record of the closed lake Laguna Cháltel (49°58′S, 71°07′W), comprising seven species and dominated by two species of the genus Limnocythere. In order to evaluate the calibration function's robustness, the obtained EC values were compared with qualitative lake level and salinity variations inferred through a multiproxy hydrological reconstruction of the lake. Both reconstructions show good overall agreement, with reconstructed EC values in the oligo-mesohaline range (average: 11 060 ± 680 μS/cm) between 4570 and 3190 cal BP, corresponding to the ephemeral and shallow lake phases, and a marked decrease in EC concurrent with a lake level rise, reaching an average EC of 1140 ± 90 μS/cm during the deep lake phase (1720 cal BP to present). The variability in the reconstructed EC values for the ephemeral lake phase showed some inconsistency with the expected trend, which was attributed to time-averaging effects; for its part, the pace of the decrease in EC during the medium-depth phase (3190-1720 cal BP) differed from the expected, which could be due to autigenic effects (redissolution of salts) at the onset of this phase. This comparison not only lends support to the adequacy of the calibration function, but also suggests that its application in the context of a multiproxy study can greatly contribute to distinguish between autigenic and climatic-related controls of paleosalinity in closed lakes, allowing performing more accurate paleoenvironmental inferences on the basis of paleohydrological reconstructions. © 2016 Elsevier Ltd. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires, UBACYT 20020100100999 
536 |a Detalles de la financiación: California Department of Fish and Game, MA 4235/8-1 
536 |a Detalles de la financiación: Deutsche Forschungsgemeinschaft 
536 |a Detalles de la financiación: PICT/R 2006-2338 
536 |a Detalles de la financiación: National Council for Scientific Research, D103 
536 |a Detalles de la financiación: Natural Sciences and Engineering Research Council of Canada, UBACyT X-277, PIP 418 
536 |a Detalles de la financiación: This work was supported by the following institutions: the Argentinean National Scientific and Technical Research Council (Grant D103 ), the Argentinean Scientific and Technical National Agency (Grant PICT/R 2006-2338 ), the University of Buenos Aires (grant UBACYT 20020100100999 ) and the German Research Foundation (DFG, Grant MA 4235/8-1 ). The authors wish to thank two anonymous reviewers, whose comments and suggestions greatly improved an earlier version of the present work. We are also grateful to María Cristina Marinone for making available the samples from Subset 2, which were obtained within projects funded by the following institutions: Natural Sciences and Engineering Research Council of Canada and Canada Research Chairs Program , 2000–2003; University of Buenos Aires (Grant UBACyT X-277 ), and the Argentinean National Scientific and Technical Research Council (Grant PIP 418 ). This is the IDEAN contribution number R-185. 
593 |a Instituto de Estudios Andinos Don Pablo Groeber (UBA-CONICET), Intendente Güiraldes 2160 (Ciudad Universitaria), Buenos Aires, 1428, Argentina 
690 1 0 |a CLOSED LAKES 
690 1 0 |a HOLOCENE 
690 1 0 |a OSTRACODA 
690 1 0 |a PALEOHYDROLOGY 
690 1 0 |a QUANTITATIVE SALINITY RECONSTRUCTION 
690 1 0 |a TRANSFER FUNCTION 
690 1 0 |a ANIMALS 
690 1 0 |a CALIBRATION 
690 1 0 |a ELECTRIC CONDUCTIVITY 
690 1 0 |a REPAIR 
690 1 0 |a TRANSFER FUNCTIONS 
690 1 0 |a CALIBRATION FUNCTIONS 
690 1 0 |a CLOSED LAKES 
690 1 0 |a ELECTRICAL CONDUCTIVITY 
690 1 0 |a HOLOCENES 
690 1 0 |a OSTRACODA 
690 1 0 |a PALEO-HYDROLOGY 
690 1 0 |a PRECIPITATION GRADIENTS 
690 1 0 |a LAKES 
690 1 0 |a CALIBRATION 
690 1 0 |a ELECTRICAL CONDUCTIVITY 
690 1 0 |a HOLOCENE 
690 1 0 |a LACUSTRINE ENVIRONMENT 
690 1 0 |a LAKE LEVEL 
690 1 0 |a OSTRACOD 
690 1 0 |a PALEOHYDROLOGY 
690 1 0 |a PRECIPITATION (CLIMATOLOGY) 
690 1 0 |a QUANTITATIVE ANALYSIS 
690 1 0 |a RECONSTRUCTION 
690 1 0 |a SALINITY 
690 1 0 |a TRANSFER FUNCTION 
690 1 0 |a ANDES 
690 1 0 |a LAGUNA AZUL 
690 1 0 |a PATAGONIA 
690 1 0 |a CRUSTACEA 
690 1 0 |a LIMNOCYTHERE 
690 1 0 |a OSTRACODA 
651 4 |a SOUTHERN SOUTH AMERICA 
651 4 |a ARGENTINA 
651 4 |a SANTA CRUZ [ARGENTINA] 
700 1 |a Laprida, C. 
773 0 |d Elsevier B.V., 2016  |g v. 69  |h pp. 522-532  |p Ecol. Indic.  |x 1470160X  |w (AR-BaUEN)CENRE-4464  |t Ecological Indicators 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84973474070&doi=10.1016%2fj.ecolind.2016.05.026&partnerID=40&md5=66e510ec98d4604971bfdfdb80ce096f  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ecolind.2016.05.026  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1470160X_v69_n_p522_RamonMercau  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1470160X_v69_n_p522_RamonMercau  |y Registro en la Biblioteca Digital 
961 |a paper_1470160X_v69_n_p522_RamonMercau  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85393