Mitochondrial genome architecture in non-alcoholic fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is associated with mitochondrial dysfunction, a decreased liver mitochondrial DNA (mtDNA) content, and impaired energy metabolism. To understand the clinical implications of mtDNA diversity in the biology of NAFLD, we applied deep-coverage whole sequencing o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Sookoian, S.
Otros Autores: Flichman, D., Scian, R., Rohr, C., Dopazo, H., Gianotti, T.F, Martino, J.S, Castaño, G.O, Pirola, C.J
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: John Wiley and Sons Ltd 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16144caa a22019457a 4500
001 PAPER-24424
003 AR-BaUEN
005 20230518205616.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84991713029 
024 7 |2 cas  |a cytochrome c oxidase, 72841-18-0, 9001-16-5; glutamine, 56-85-9, 6899-04-3; histidine, 645-35-2, 7006-35-1, 71-00-1; reduced nicotinamide adenine dinucleotide dehydrogenase, 9027-14-9, 9032-21-7, 9079-67-8; transfer RNA, 9014-25-9; DNA, Mitochondrial 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPTLA 
100 1 |a Sookoian, S. 
245 1 0 |a Mitochondrial genome architecture in non-alcoholic fatty liver disease 
260 |b John Wiley and Sons Ltd  |c 2016 
270 1 0 |m Sookoian, S.; Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires – National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos AiresArgentina; email: sookoian.silvia@lanari.fmed.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Rinella, M.E., Nonalcoholic fatty liver disease: a systematic review (2015) JAMA, 313, pp. 2263-2273 
504 |a Brunt, E.M., Histopathology of non-alcoholic fatty liver disease (2009) Clin Liver Dis, 13, pp. 533-544 
504 |a Bhala, N., Angulo, P., van der Poorten, D., The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study (2011) Hepatology, 54, pp. 1208-1216 
504 |a Sookoian, S., Pirola, C.J., The genetic epidemiology of nonalcoholic fatty liver disease: toward a personalized medicine (2012) Clin Liver Dis, 16, pp. 467-485 
504 |a Begriche, K., Massart, J., Robin, M.A., Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease (2013) Hepatology, 58, pp. 1497-1507 
504 |a Sookoian, S., Pirola, C.J., NAFLD. Metabolic make-up of NASH: from fat and sugar to amino acids (2014) Nat Rev Gastroenterol Hepatol, 11, pp. 205-207 
504 |a Cotter, D.G., Ercal, B., Huang, X., Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia (2014) J Clin Invest, 124, pp. 5175-5190 
504 |a Satapati, S., Sunny, N.E., Kucejova, B., Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver (2012) J Lipid Res, 53, pp. 1080-1092 
504 |a Befroy, D.E., Perry, R.J., Jain, N., Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy (2014) Nat Med, 20, pp. 98-102 
504 |a Sunny, N.E., Parks, E.J., Browning, J.D., Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease (2011) Cell Metab, 14, pp. 804-810 
504 |a Sookoian, S., Castano, G.O., Scian, R., Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level (2016) Am J Clin Nutr, 103, pp. 422-434 
504 |a Caldwell, S.H., de Freitas, L.A., Park, S.H., Intramitochondrial crystalline inclusions in nonalcoholic steatohepatitis (2009) Hepatology, 49, pp. 1888-1895 
504 |a Garcia-Ruiz, C., Baulies, A., Mari, M., Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: cause or consequence? (2013) Free Radic Res, 47, pp. 854-868 
504 |a Pirola, C.J., Gianotti, T.F., Burgueno, A.L., Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease (2013) Gut, 62, pp. 1356-1363 
504 |a Sanyal, A.J., Campbell-Sargent, C., Mirshahi, F., Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities (2001) Gastroenterology, 120, pp. 1183-1192 
504 |a Sookoian, S., Rosselli, M.S., Gemma, C., Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter (2010) Hepatology, 52, pp. 1992-2000 
504 |a Rocher, C., Taanman, J.W., Pierron, D., Influence of mitochondrial DNA level on cellular energy metabolism: implications for mitochondrial diseases (2008) J Bioenerg Biomembr, 40, pp. 59-67 
504 |a Kauppila, J.H., Stewart, J.B., Mitochondrial DNA: radically free of free-radical driven mutations (1847) Biochim Biophys Acta, 2015, pp. 1354-1361 
504 |a Wallace, D.C., Chalkia, D., Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease (2013) Cold Spring Harb Perspect Med, 3, p. a021220 
504 |a Ye, K., Lu, J., Ma, F., Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals (2014) Proc Natl Acad Sci USA, 111, pp. 10654-10659 
504 |a Stewart, J.B., Chinnery, P.F., The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease (2015) Nat Rev Genet, 16, pp. 530-542 
504 |a Koliaki, C., Szendroedi, J., Kaul, K., Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis (2015) Cell Metab, 21, pp. 739-746 
504 |a Taylor, R.W., Turnbull, D.M., Mitochondrial DNA mutations in human disease (2005) Nat Rev Genet, 6, pp. 389-402 
504 |a Tuppen, H.A., Blakely, E.L., Turnbull, D.M., Mitochondrial DNA mutations and human disease (1797) Biochim Biophys Acta, 2010, pp. 113-128 
504 |a Ovchinsky, N., Lavine, J.E., A critical appraisal of advances in pediatric nonalcoholic fatty liver disease (2012) Semin Liver Dis, 32, pp. 317-324 
504 |a Lotowska, J.M., Sobaniec-Lotowska, M.E., Bockowska, S.B., Pediatric non-alcoholic steatohepatitis: the first report on the ultrastructure of hepatocyte mitochondria (2014) World J Gastroenterol, 20, pp. 4335-4340 
504 |a Luoma, P.T., Luo, N., Loscher, W.N., Functional defects due to spacer-region mutations of human mitochondrial DNA polymerase in a family with an ataxia-myopathy syndrome (2005) Hum Mol Genet, 14, pp. 1907-1920 
504 |a Sookoian, S., Pirola, C.J., DNA methylation and hepatic insulin resistance and steatosis (2012) Curr Opin Clin Nutr Metab Care, 15, pp. 350-356 
504 |a Kleiner, D.E., Brunt, E.M., Van Natta, M., Design and validation of a histological scoring system for nonalcoholic fatty liver disease (2005) Hepatology, 41, pp. 1313-1321 
504 |a Brunt, E.M., Kleiner, D.E., Wilson, L.A., Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings (2011) Hepatology, 53, pp. 810-820 
504 |a Pirola, C.J., Scian, R., Gianotti, T.F., Epigenetic modifications in the biology of nonalcoholic fatty liver disease: the role of DNA hydroxymethylation and TET proteins (2015) Medicine (Baltimore), 94 
504 |a Rutledge, R.G., Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing automated high-throughput applications (2004) Nucleic Acids Res, , 32 
504 |a Gianotti, T.F., Sookoian, S., Dieuzeide, G., (2008) Obesity (Silver Spring), 16, pp. 1591-1595. , A decreased mitochondrial DNA content is related to insulin resistance in adolescents 
504 |a Schlotter, Y.M., Veenhof, E.Z., Brinkhof, B., A GeNorm algorithm-based selection of reference genes for quantitative real-time PCR in skin biopsies of healthy dogs and dogs with atopic dermatitis (2009) Vet Immunol Immunopathol, 129, pp. 115-118 
504 |a Ruijter, J.M., Ramakers, C., Hoogaars, W.M., Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data (2009) Nucleic Acids Res, 37 
504 |a Bender, A., Krishnan, K.J., Morris, C.M., High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease (2006) Nat Genet, 38, pp. 515-517 
504 |a Seneca, S., Vancampenhout, K., Van Coster, R., Analysis of the whole mitochondrial genome: translation of the Ion Torrent Personal Genome Machine system to the diagnostic bench? (2015) Eur J Hum Genet, 23, pp. 41-48 
504 |a Sosa, M.X., Sivakumar, I.K., Maragh, S., Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency (2012) PLoS Comput Biol, 8 
504 |a Sookoian, S., Castano, G.O., Burgueno, A.L., A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity (2009) J Lipid Res, 50, pp. 2111-2116 
504 |a Bleda, M., Tarraga, J., de Maria, A., CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources (2012) Nucleic Acids Res, pp. W609-W614. , 40 
520 3 |a Non-alcoholic fatty liver disease (NAFLD) is associated with mitochondrial dysfunction, a decreased liver mitochondrial DNA (mtDNA) content, and impaired energy metabolism. To understand the clinical implications of mtDNA diversity in the biology of NAFLD, we applied deep-coverage whole sequencing of the liver mitochondrial genomes. We used a multistage study design, including a discovery phase, a phenotype-oriented study to assess the mutational burden in patients with steatohepatitis at different stages of liver fibrosis, and a replication study to validate findings in loci of interest. We also assessed the potential protein-level impact of the observed mutations. To determine whether the observed changes are tissue-specific, we compared the liver and the corresponding peripheral blood entire mitochondrial genomes. The nuclear genes POLG and POLG2 (mitochondrial DNA polymerase-γ) were also sequenced. We observed that the liver mtDNA of patients with NAFLD harbours complex genomes with a significantly higher mutational (1.28-fold) rate and degree of heteroplasmy than in controls. The analysis of liver mitochondrial genomes of patients with different degrees of fibrosis revealed that the disease severity is associated with an overall 1.4-fold increase in mutation rate, including mutations in genes of the oxidative phosphorylation (OXPHOS) chain. Significant differences in gene and protein expression patterns were observed in association with the cumulative number of OXPHOS polymorphic sites. We observed a high degree of homology (∼98%) between the blood and liver mitochondrial genomes. A missense POLG p.Gln1236His variant was associated with liver mtDNA copy number. In conclusion, we have demonstrated that OXPHOS genes contain the highest number of hotspot positions associated with a more severe phenotype. The variability of the mitochondrial genomes probably originates from a common germline source; hence, it may explain a fraction of the ‘missing heritability’ of NAFLD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  |l eng 
593 |a Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires – National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Virology, School of Pharmacy and Biochemistry, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires – National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Biomedical Genomics and Evolution Laboratory. Ecology, Genetics and Evolution Department, Faculty of Science, IEGEBA, University of Buenos Aires – National Scientific and Technical Research Council (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
593 |a Department of Pathology, Hospital Diego Thompson, San Martin, Buenos Aires, Argentina 
593 |a Liver Unit, Medicine and Surgery Department, Hospital Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a FATTY LIVER 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a LIVER FIBROSIS 
690 1 0 |a MITOCHONDRIAL DYSFUNCTION 
690 1 0 |a MITOCHONDRIAL GENOME 
690 1 0 |a NASH 
690 1 0 |a NON-ALCOHOLIC FATTY LIVER DISEASE 
690 1 0 |a CYTOCHROME C OXIDASE 
690 1 0 |a DNA DIRECTED DNA POLYMERASE GAMMA 
690 1 0 |a GLUTAMINE 
690 1 0 |a HISTIDINE 
690 1 0 |a MITOCHONDRIAL DNA 
690 1 0 |a REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE 
690 1 0 |a TRANSFER RNA 
690 1 0 |a MITOCHONDRIAL DNA 
690 1 0 |a ADULT 
690 1 0 |a ARTICLE 
690 1 0 |a BODY MASS 
690 1 0 |a CLINICAL ARTICLE 
690 1 0 |a COMPARATIVE STUDY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DISEASE SEVERITY 
690 1 0 |a DNA CONTENT 
690 1 0 |a ELECTRON MICROSCOPY 
690 1 0 |a FEMALE 
690 1 0 |a FOLLOW UP 
690 1 0 |a GENE FREQUENCY 
690 1 0 |a GENE LOCUS 
690 1 0 |a GENE SEQUENCE 
690 1 0 |a GENETIC VARIABILITY 
690 1 0 |a HETEROPLASMY 
690 1 0 |a HISTOPATHOLOGY 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN TISSUE 
690 1 0 |a IMMUNOREACTIVITY 
690 1 0 |a LIVER BIOPSY 
690 1 0 |a LIVER FIBROSIS 
690 1 0 |a MALE 
690 1 0 |a MIDDLE AGED 
690 1 0 |a MISSENSE MUTATION 
690 1 0 |a MITOCHONDRIAL DNA REPLICATION 
690 1 0 |a MITOCHONDRIAL GENOME 
690 1 0 |a MUTATION RATE 
690 1 0 |a NONALCOHOLIC FATTY LIVER 
690 1 0 |a OXIDATIVE PHOSPHORYLATION 
690 1 0 |a PHENOTYPE 
690 1 0 |a POINT MUTATION 
690 1 0 |a POLG GENE 
690 1 0 |a POLG2 GENE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a REPLICATION STUDY 
690 1 0 |a SEQUENCE ANALYSIS 
690 1 0 |a SINGLE NUCLEOTIDE POLYMORPHISM 
690 1 0 |a CASE CONTROL STUDY 
690 1 0 |a GENETIC POLYMORPHISM 
690 1 0 |a GENETIC PREDISPOSITION 
690 1 0 |a GENETICS 
690 1 0 |a GERMLINE MUTATION 
690 1 0 |a HAPLOTYPE 
690 1 0 |a LIVER CIRRHOSIS 
690 1 0 |a LIVER MITOCHONDRION 
690 1 0 |a MUTATION 
690 1 0 |a NONALCOHOLIC FATTY LIVER 
690 1 0 |a SEVERITY OF ILLNESS INDEX 
690 1 0 |a ADULT 
690 1 0 |a CASE-CONTROL STUDIES 
690 1 0 |a DNA, MITOCHONDRIAL 
690 1 0 |a FEMALE 
690 1 0 |a GENETIC PREDISPOSITION TO DISEASE 
690 1 0 |a GENOME, MITOCHONDRIAL 
690 1 0 |a GERM-LINE MUTATION 
690 1 0 |a HAPLOTYPES 
690 1 0 |a HUMANS 
690 1 0 |a LIVER CIRRHOSIS 
690 1 0 |a MALE 
690 1 0 |a MIDDLE AGED 
690 1 0 |a MITOCHONDRIA, LIVER 
690 1 0 |a MUTATION 
690 1 0 |a MUTATION, MISSENSE 
690 1 0 |a NON-ALCOHOLIC FATTY LIVER DISEASE 
690 1 0 |a OXIDATIVE PHOSPHORYLATION 
690 1 0 |a POLYMORPHISM, GENETIC 
690 1 0 |a SEVERITY OF ILLNESS INDEX 
700 1 |a Flichman, D. 
700 1 |a Scian, R. 
700 1 |a Rohr, C. 
700 1 |a Dopazo, H. 
700 1 |a Gianotti, T.F. 
700 1 |a Martino, J.S. 
700 1 |a Castaño, G.O. 
700 1 |a Pirola, C.J. 
773 0 |d John Wiley and Sons Ltd, 2016  |g v. 240  |h pp. 437-449  |k n. 4  |p J. Pathol.  |x 00223417  |t Journal of Pathology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84991713029&doi=10.1002%2fpath.4803&partnerID=40&md5=136e6ce5def0aed51eae1abd32599f68  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1002/path.4803  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00223417_v240_n4_p437_Sookoian  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223417_v240_n4_p437_Sookoian  |y Registro en la Biblioteca Digital 
961 |a paper_00223417_v240_n4_p437_Sookoian  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85377