Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality

Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human &...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Haimovici, A.
Otros Autores: Balenzuela, Pablo, Tagliazucchi, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Mary Ann Liebert Inc. 2016
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19659caa a22017417a 4500
001 PAPER-24417
003 AR-BaUEN
005 20241002104445.0
008 190411s2016 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-85004191405 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Haimovici, A. 
245 1 0 |a Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality 
260 |b Mary Ann Liebert Inc.  |c 2016 
270 1 0 |m Tagliazucchi, E.; Netherlands Institute for Neuroscience, Meibergdreef 47, Netherlands; email: tagliazucchi.enzo@googlemail.com 
504 |a Achard, S., Hubs of brain functional networks are radically reorganized in comatose patients (2012) Proc Natl Acad Sci USA, 109, pp. 206080-206113 
504 |a Agosta, F., Brain network connectivity assessed using graph theory in frontotemporal dementia (2013) Neurology, 81, pp. 134-143 
504 |a Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., Sporns, O., Modeling the impact of lesions in the human brain (2009) PLoS Comp Biol, 5, p. e1000408 
504 |a Baggio, H.C., Functional brain networks and cognitive deficits inParkinson's disease (2014) Hum Brain Mapp, 35, pp. 4620-4634 
504 |a Bak, P., Tang, C., Wiesenfeld, K., Self-organized criticality: An explanation of the 1/f noise (1987) Phys Rev Lett, 59, p. 381 
504 |a Baron, J.C., D'Antona, R., Pantano, P., Serdaru, M., Samson, Y., Bousser, M.G., Effects of thalamic stroke on energy metabolism of the cerebral cortex (1986) Brain, 109, pp. 1243-1259 
504 |a Bartolomei, F., McGonigal, A., Naccache, L., Alteration of consciousness in focal epilepsy: The global workspace alteration theory (2014) Epilepsy Behav, 30, pp. 17-23 
504 |a Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S., Signature of consciousness in the dynamics of restingstate brain activity (2015) Proc Natl Acad Sci USA, 112, pp. 887-892 
504 |a Beggs, J.M., Plenz, D., Neuronal avalanches in neocortical circuits (2003) J Neurosci, 23, pp. 11167-11177 
504 |a Beggs, J.M., Timme, N., Being critical of criticality in the brain (2012) Front Physiol, 3, p. 163 
504 |a Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease (2009) J Neurosci, 29, pp. 1860-1873 
504 |a Buxton, R.B., Uludag, K., Dubowitz, D.J., Liu, T.T., Modeling the hemodynamic response to brain activation (2004) Neuroimage, 23, pp. S220-S233 
504 |a Cabral, J., Hugues, E., Kringelbach, M.L., Deco, G., Modeling the outcome of structural disconnection on resting-state functional connectivity (2012) Neuroimage, 62, pp. 1342-1353 
504 |a Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, M., Casali, K.R., A theoretically based index of consciousness independent of sensory processing and behavior (2013) Sci Trans Med, 5, p. 198105 
504 |a Chialvo, D.R., Emergent complex neural dynamics (2010) Nat Phys, 6, pp. 744-750 
504 |a Cocchi, L., Zalesky, A., Fornito, A., Mattingley, J.B., Dynamic cooperation and competition between brain systems during cognitive control (2013) Trends Cogn Sci, 17, pp. 493-501 
504 |a Copelli, M., Campos, P.R., Excitable scale free networks (2007) Eur Phys J B, 56, pp. 273-278 
504 |a Crossley, N.A., Mechelli, A., Scott, J., Carletti, F., Fox, P.T., McGuire, P., Bullmore, E.T., The hubs of the human connectome are generally implicated in the anatomy of brain disorders (2014) Brain, 137, pp. 2382-2395 
504 |a Damasio, H., Damasio, A.R., (1989) Lesion Analysis in Neuropsychology, , USA: Oxford University Press 
504 |a Deco, G., Hagmann, P., Hudetz, A.G., Tononi, G., Modeling resting-state functional networks when the cortex falls asleep: Local and global changes (2014) Cereb Cortex, 24, pp. 3180-3194 
504 |a Deco, G., McIntosh, A.R., Shen, K., Hutchinson, R.M., Menon, R.S., Everling, S., Identification of optimal structural connectivity using functional connectivity and neural modeling (2014) J Neurosci, 34, pp. 7910-7916 
504 |a Dehaene, S., Naccache, L., Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework (2001) Cognition, 79, pp. 1-37 
504 |a Engel, J., Kuhl, D.E., Phelps, M.E., Patterns of human local cerebral glucose metabolism during epileptic seizures (1982) Science, 218, pp. 64-66 
504 |a Fraiman, D., Chialvo, D.R., What kind of noise is brain noise: Anomalous scaling behavior of the resting brain activity fluctuations (2012) Front Physiol, 3, p. 307 
504 |a Fransson, P., Marrelec, G., The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis (2008) Neuroimage, 42, pp. 1178-1184 
504 |a Freeman, L.C., A set of measures of centrality based on betweenness (1977) Sociometry, 40, pp. 35-41 
504 |a Freund, T., Kali, S., Interneurons (2008) Scholarpedia, 3, p. 4720 
504 |a Gaetz, M., The neurophysiology of brain injury (2004) Clin Neurophys, 115, pp. 4-18 
504 |a Garrett, D.D., Samanez-Larkin, G.R., MacDonald, S.W., Lindenberger, U., McIntosh, A.R., Grady, C.L., Moment-tomoment brain signal variability: A next frontier in human brain mapping (2013) Neurosci Biobehav Rev, 37, pp. 610-624 
504 |a Greenberg, J.M., Hastings, S.P., Spatial patterns for discrete models of diffusion in excitable media (1978) SIAM J App Math, 34, pp. 515-523 
504 |a Grefkes, C., Fink, G.R., Connectivity-based approaches in stroke and recovery of function (2014) Lancet Neurol, 13, pp. 206-216 
504 |a Guimera, R., Amaral, L.A.N., Functional cartography of complex metabolic networks (2005) Nature, 433, pp. 895-900 
504 |a Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O., Mapping the structural core of human cerebral cortex (2008) PLoS Biol, 6, p. e159 
504 |a Haimovici, A., Marsili, M., Criticality of mostly informative samples: A Bayesian model selection approach (2015) J Stat Mech, 2015, p. P10013 
504 |a Haimovici, A., Tagliazucchi, E., Balenzuela, P., Chialvo, D.R., Brain organization into resting state networks emerges at criticality on a model of the human connectome (2013) Phys Rev Lett, 110, p. 178101 
504 |a Honey, C.J., Sporns, O., Dynamical consequences of lesions in cortical networks (2008) Hum Brain Mapp, 29, pp. 802-809 
504 |a Katayama, Y., Becker, D.P., Tamura, T., Hovda, D.A., Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury (1990) J Neurosurg, 73, pp. 889-900 
504 |a Kolb, B., Gibb, R., Brain plasticity and recovery from early cortical injury (2007) Dev Psychobiol, 49, pp. 107-118 
504 |a Kraft, R.H., McKee, P.J., Dagro, A.M., Grafton, S.T., Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: Connectome neurotrauma mechanics (2012) PLoS Comput Biol, 8, p. e1002619 
504 |a Kuhl, D.E., Phelps, M.E., Kowell, A.P., Metter, E.J., Selin, C., Winter, J., Effects of stroke on local cerebral metabolismand perfusion: Mapping by emission computed tomography of 18FDG and 13NH3 (1980) Ann Neurol, 8, pp. 47-60 
504 |a Laureys, S., Owen, A.M., Schiff, N.D., Brain function in coma, vegetative state, and related disorders (2004) Lancet Neurol, 3, pp. 537-546 
504 |a Liang, X., Zou, Q., He, Y., Yang, Y., Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain (2013) Proc Natl Acad Sci USA, 110, pp. 1929-1934 
504 |a Liu, M., Chen, Z., Beaulieu, C., Gross, D.W., Disrupted anatomic white matter network in left mesial temporal lobe epilepsy (2014) Epilepsia, 55, pp. 674-682 
504 |a Lohmann, G., Margulies, D.S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain (2010) PloS One, 5, p. e10232 
504 |a MacHado, C., Cuspineda, E., Valdés, P., Virues, T., Llopis, F., Bosch, J., Assessing acute middle cerebral artery ischemic stroke by quantitative electric tomography (2004) Clin EEG Neurosci, 35, pp. 116-124 
504 |a Marsili, M., Mastromatteo, I., Roudi, Y., On sampling and modeling complex systems (2013) J Stat Mech, 2013, p. P09003 
504 |a Mastromatteo, I., Marsili, M., On the criticality of inferred models (2011) J Stat Mech, 2011, p. P10012 
504 |a Mayer, A.R., Mannell, M.V., Ling, J., Gasparovic, C., Yeo, R.A., Functional connectivity in mild traumatic brain injury (2011) Hum Brain Mapp, 32, pp. 1825-1835 
504 |a Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E., Gross, T., Failure of adaptive self-organized criticality during epileptic seizure attacks (2012) PLoS Comp Biol, 8, p. e1002312 
504 |a Messé, A., Rudrauf, D., Benali, H., Marrelec, G., Relating structure and function in the human brain: Relative contributions of anatomy, stationary dynamics, and non-stationarities (2014) PLoS Comp Biol, 10, p. e1003530 
504 |a Misić, B., Betzel, R.F., De Reus, M.A., Van Den Heuvel, M.P., Berman, M.G., McIntosh, A.R., Sporns, O., Network-level structure-function relationships in human neocortex (2016) Cereb Cortex, 26, pp. 3285-3296 
504 |a Park, H., Friston, K., Structural and functional brain networks: From connections to cognition (2013) Science, 342, p. 1238411 
504 |a Posner, M.I., Petersen, S.E., Fox, P.T., Raichle, M.E., Localization of cognitive operations in the human brain (1988) Science, 240, pp. 1627-1631 
504 |a Priesemann, V., Valderrama, M., Wibral, M., Le Van Quyen, M., Neuronal avalanches differ from wakefulness to deep sleep-evidence from intracranial depth recordings in humans (2013) PLoS Comp Biol, 9, p. e1002985 
504 |a Priesemann, V., Wibral, M., Valderrama, M., Pröpper, R., Le Van Quyen, M., Geisel, T., Spike avalanches in vivo suggest a driven, slightly subcritical brain state (2014) Front Syst Neurosci, 8, p. 108 
504 |a Raichle, M.E., The brain's dark energy (2006) Science, 314, p. 1249 
504 |a Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L., A default mode of brain function (2001) Proc Natl Acad Sci USA, 98, pp. 676-682 
504 |a Reveley, C., Seth, A.K., Pierpaoli, C., Silva, A.C., Yu, D., Saunders, R.C., Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography (2015) Proc Natl Acad Sci USA, 112, pp. E2820-E2828 
504 |a Rubinov, M., Bullmore, E., Schizophrenia and abnormal brain network hubs (2013) Dialogues Clin Neurosci, 15, pp. 339-349 
504 |a Rubinov, M., Sporns, O., Complex network measures of brain connectivity: Uses and interpretations (2010) Neuro Image, 52, pp. 1059-1069 
504 |a Schiff, N.D., Nauvel, T., Victor, J.D., Large-scale brain dynamics in disorders of consciousness (2014) Curr Opin Neurobiol, 25, pp. 7-14 
504 |a Scott, G., Fagerholm, E.D., Mutoh, H., Leech, R., Sharp, D.J., Shew, W.L., Knöpfel, T., Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics (2014) J Neurosci, 34, pp. 16611-16620 
504 |a Sharp, D.J., Beckmann, C.F., Greenwod, R., Kinnunen, K.M., Bonelle, V., De Boissezon, X., Default mode network functional and structural connectivity after traumatic brain injury (2011) Brain, 134, pp. 2233-2247 
504 |a Sporns, O., The non-random brain: Efficiency, economy, and complex dynamics (2011) Front Comput Neurosci, 5, p. 5 
504 |a Sporns, O., Honey, C.J., Kötter, R., Identification and classification of hubs in brain networks (2007) PloS One, 2, p. e1049 
504 |a Stauffer, D., Aharony, A., (1994) Introduction to Percolation Theory, , United Kingdom: CRC Press Taylor & Francis Group 
504 |a Stuss, D.T., Stethem, L.L., Hugenholtz, H., Picton, T., Pivik, J., Richard, M.T., Reaction time after head injury: Fatigue, divided and focused attention, and consistency of performance (1989) J Neurol Neurosurg Psych, 52, pp. 742-748 
504 |a Tagliazucchi, E., Chialvo, D.R., Siniatchkin, M., Amico, E., Brichant, J.F., Bonhomme, V., Large-scale signatures of unconsciousness are consistent with a departure from critical dynamics (2015) J Roy Soc Interface, 13, pp. 1-11 
504 |a Tagliazucchi, E., Crossley, N., Bullmore, E.T., Laufs, H., Deep sleep divides the cortex into opposite modes of anatomicalfunctional coupling (2016) Brain Struct Func, 221, pp. 4221-4234 
504 |a Tagliazucchi, E., Fraiman, D., Balenzuela, P., Chialvo, D.R., Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis (2012) Front Neurosci, 3, p. 15 
504 |a Tagliazucchi, E., Chialvo, D.R., The collective brain (2011) Decision Making, 15, p. 57 
504 |a Tononi, G., An information integration theory of consciousness (2004) BMC Neurosci, 5, p. 1 
504 |a Tebano, M.T., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pezzini, G., Ricci, G.F., EEG spectral analysis after minor head injury in man (1988) EEG Clin Neurophys, 70, pp. 185-189 
504 |a Thatcher, R.W., North, D.M., Curtin, R.T., Walker, R.A., Biver, C.J., Gomez, J.F., Salazar, A.M., An EEG severity index of traumatic brain injury (2001) J Neuropsych Clin Neurosci, 13, pp. 77-87 
504 |a Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain (2002) Neuroimage, 15, pp. 273-289 
504 |a Vagnozzi, R., Signoretti, S., Cristofori, L., Alessandrini, F., Floris, R., Isgrò, E., Assessment of metabolic brain damage and recovery following mild traumatic brain injury: A multicentre, proton magnetic resonance spectroscopic study in concussed patients (2010) Brain, 133, pp. 3232-3242 
504 |a Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L.J., Bruno, M.A., Boveroux, P., Schnakers, C., Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients (2010) Brain, 133, pp. 161-171 
504 |a Vása, F., Shanahan, M., Hellyer, P.J., Scott, G., Cabral, J., Leech, R., Effects of lesions on synchrony and metastability in cortical networks (2015) Neuroimage, 118, pp. 456-467 
504 |a Werner, G., Metastability, criticality and phase transitions in brain and its models (2007) Biosystems, 90, pp. 496-508 
504 |a Whitfield-Gabrieli, S., Ford, J.M., Default mode network activity and connectivity in psychopathology (2012) Ann Rev Clin Psych, 8, pp. 49-76 
504 |a Xia, M., Wang, J., He, Y., Brainnet viewer: A network visualization tool for human brain connectomics (2013) PLoS One, 8, p. e68910 
504 |a Young, G.B., The EEG in coma (2000) J Clin Neurophys, 17, pp. 473-485 
506 |2 openaire  |e Política editorial 
520 3 |a Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders. © 2016 Mary Ann Liebert, Inc.  |l eng 
593 |a Departamento de Física, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Instituto de Física de Buenos Aires (IFIBA), CONICET, Buenos Aires, Argentina 
593 |a Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam-Zuidoost BA, 1105, Netherlands 
690 1 0 |a ANATOMIC CONNECTIVITY 
690 1 0 |a BRAIN INJURY 
690 1 0 |a DYNAMICS 
690 1 0 |a FUNCTIONAL CONNECTIVITY 
690 1 0 |a MODELING 
690 1 0 |a ARTICLE 
690 1 0 |a BRAIN DAMAGE 
690 1 0 |a CINGULATE GYRUS 
690 1 0 |a CONNECTOME 
690 1 0 |a MIDDLE CINGULATE CORTEX 
690 1 0 |a NEUROPATHOLOGY 
690 1 0 |a PATHOLOGICAL ANATOMY 
690 1 0 |a POSTERIOR CINGULATE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a STRUCTURAL CONNECTOME 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a BRAIN 
690 1 0 |a BRAIN INJURY 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a CONNECTOME 
690 1 0 |a DIFFUSION TENSOR IMAGING 
690 1 0 |a HUMAN 
690 1 0 |a NERVE CELL NETWORK 
690 1 0 |a NERVE TRACT 
690 1 0 |a PATHOPHYSIOLOGY 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a PROCEDURES 
690 1 0 |a STATISTICS AND NUMERICAL DATA 
690 1 0 |a BRAIN 
690 1 0 |a BRAIN INJURIES 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a CONNECTOME 
690 1 0 |a DIFFUSION TENSOR IMAGING 
690 1 0 |a HUMANS 
690 1 0 |a MODELS, NEUROLOGICAL 
690 1 0 |a NERVE NET 
690 1 0 |a NEURAL PATHWAYS 
700 1 |a Balenzuela, Pablo 
700 1 |a Tagliazucchi, E. 
773 0 |d Mary Ann Liebert Inc., 2016  |g v. 6  |h pp. 759-771  |k n. 10  |p Brain Connectivity  |x 21580014  |t Brain Connectivity 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85004191405&doi=10.1089%2fbrain.2016.0455&partnerID=40&md5=c6cc23200c8692b14ac3bd41ccb46db8  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1089/brain.2016.0455  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_21580014_v6_n10_p759_Haimovici  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_21580014_v6_n10_p759_Haimovici  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_21580014_v6_n10_p759_Haimovici  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion