Microstructure and corrosion behavior of AISI 316L duplex treated by means of ion nitriding and plasma based ion implantation and deposition

Austenitic stainless steels are the preferred materials for mechanical components in the food, oil and chemical industries due to their good corrosion resistance but they often suffer severe wear due to their poor tribological properties. Plasma surface engineering has been extended to stainless ste...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Escalada, L.
Otros Autores: Lutz, J., Brühl, S.P, Fazio, M., Márquez, Adriana Beatriz, Mändl, S., Manova, D., Simison, S.N
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09590caa a22011897a 4500
001 PAPER-24281
003 AR-BaUEN
005 20250624110145.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84875920149 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Escalada, L. 
245 1 0 |a Microstructure and corrosion behavior of AISI 316L duplex treated by means of ion nitriding and plasma based ion implantation and deposition 
260 |c 2013 
270 1 0 |m Simison, S.N.; Corrosion Division, INTEMA, Faculty of Engineering, University of Mar del Plata, Juan B. Justo 4302, Mar del Plata, Argentina; email: ssimison@fi.mdp.edu.ar 
504 |a Escalada, L., Lutz, J., Mändl, S., Manova, D., Neumann, H., Simison, S., (2012) Surf. Coat. Technol., 211, p. 76 
504 |a Mingolo, N., Tschiptschin, A.P., Pinedo, C.E., (2006) Surf. Coat. Technol., 201, p. 4215 
504 |a Gil, L., Brühl, S., Jiménez, L., Leon, O., Guevara, R., Staia, M.H., (2008) Surf. Coat. Technol., 202, p. 1802 
504 |a Li, X., Bell, T., (2008) Corros. Sci., 46, p. 1527 
504 |a Manova, D., Thorwarth, G., Mändl, S., Neumann, H., Stritzker, B., Rauschenbach, B., (2006) Nucl. Instr. Meth. B, 242, p. 285 
504 |a Nosei, L., Avalos, M., Gómez, B.J., Nachez, L., Feugeas, J., (2004) Thin Solid Films, 468, p. 134 
504 |a Fossati, A., Borgioli, F., Galvanetto, E., Bacci, T., (2006) Corros. Sci., 48, p. 1513 
504 |a Gontijo, L.C., Machado, R., Miola, E.J., Casteletti, L.C., Alcântara, N.G., Nascente, P.A.P., (2006) Mater. Sci. Eng., 431, p. 315 
504 |a Choy, K.L., (2003) Prog. Mater. Sci., 48, p. 57 
504 |a Rodríguez, R.J., García, J.A., Medrano, A., Rico, M., Sánchez, R., Martínez, R., Labrugère, C., Guette, A., (2002) Vacuum, 67, p. 559 
504 |a Puchi-Cabrera, E.S., Martínez, F., Herrera, I., Berríos, J.A., Dixit, S., Bhat, D., (2004) Surf. Coat. Technol., 182, p. 276 
504 |a Matthews, A., Leyland, A., Wilson, A., (2002) Vacuum, 68, p. 57 
504 |a Smolik, J., Walkowicz, J., Tacikowski, J., (2000) Surf. Coat. Technol., 125, p. 134 
504 |a Dong, H., Sun, Y., Bell, T., (1997) Surf. Coat. Technol., 90, p. 91 
504 |a Wu, W., Li, X., Chen, J., Dong, H., (2009) Surf. Coat. Technol., 203, p. 1273 
504 |a Short, K.T., Zhang, Z., Finnie, K., Collins, G.A., Figueroa, C.A., (2008) Mater. Lett., 62, p. 3156 
504 |a Liu, C., Lin, G., Yang, D., Qi, M., (2006) Surf. Coat. Technol., 200, p. 4011 
504 |a Chenglong, L., Dazhi, Y., Guoqiang, L., Min, Q., (2005) Mater. Lett., 59, p. 3813 
504 |a Anders, A., (2004) Surf. Coat. Technol., 183, p. 301 
504 |a Bilek, M.M., McKenzie, D.R., Tarrant, R.N., Lim, S.H.M., McCulloch, D.G., (2002) Surf. Coat. Technol., 156, p. 136 
504 |a Attenberger, W., Thorwarth, G., Manova, D., Mändl, S., Strizker, B., Rauschenbach, B., (2004) Surf. Coat. Technol., p. 412 
504 |a Arias Duran, A., Fazio, M., Kleiman, A., Giuliani, L., Márquez, A., Grondona, D., Study of the efficiency of magnetic island macroparticle filters for different vacuum arc configurations (2012) Journal of Physics: Conference Series, 370, p. 012016 
504 |a Lim, S.H.N., McCulloch, D.G., Russo, S., Bilek, M.M.M., McKenzie, D.R., (2002) Nucl. Instr. Meth. B, 190, p. 723 
504 |a Huber, P., Manova, D., Mändl, S., Rauschenbach, B., (2003) Surf. Coat. Technol., p. 1243 
504 |a Wan, G.J., Huang, N., Leng, Y.X., Yang, P., Chen, J.Y., Wang, J., Sun, H., (2004) Surf. Coat. Technol., 186, p. 136 
504 |a Kelly, H., Lepone, F.A., Márquez, A., (2001) J. Appl. Phys., 89, p. 1567 
504 |a Sosa, A.D., Echeverría, M.D., Moncada, O.J., Simison, S.N., (2008) Mater. Lett., 62, p. 100 
504 |a Brühl, S.P., Charadia, R., Simison, S., Lamas, D.G., Cabo, A., (2010) Surf. Coat. Technol., 204, p. 3280 
504 |a Yongqiang, W., Xiaoxia, C., Xiubo, T., Chunzhi, G., Shiqin, Y., Zhiqiang, J., Liangji, C., (2013) Vacuum, 89, p. 185 
504 |a (1995) Handbook of Vacuum Arc Science and Technology, Fundamentals and Applications, , Noyes, Park Ridge, NJ, R.L. Boxman, D.M. Sanders, P.J. Martin (Eds.) 
504 |a (2004) Handbook of Plasma Immersion Ion Implantation and Deposition, p. 243. , Wiley-VCH, Weinheim, A. Anders (Ed.) 
504 |a Vieira, R., Nono, M.C.A., (2005) Mater. Sci. Forum, p. 717 
504 |a Ziegler, J.F., http://www.srim.org 
506 |2 openaire  |e Política editorial 
520 3 |a Austenitic stainless steels are the preferred materials for mechanical components in the food, oil and chemical industries due to their good corrosion resistance but they often suffer severe wear due to their poor tribological properties. Plasma surface engineering has been extended to stainless steel hardening, through the modification of the surface with ion nitriding or the application of hard coatings. In this work, AISI 316L samples were coated with titanium nitride by means of a cathodic arc (CA) and this technique was combined with plasma immersion ion implantation, in a process called plasma based ion implantation and deposition (PBII&D). The effect on corrosion resistance was analyzed, also considering ion nitriding as a pre-treatment. Microstructure and composition were analyzed by means of glancing angle XRD, SIMS, SEM, SEM-FIB and EDS. Localized corrosion resistance was analyzed in a cyclic potentiodynamic polarization experiment in 3.5% NaCl solution, and the corroded surface was analyzed with AFM, SEM and EDS as well. It was found that nitriding at 400 °C produces a thin nitrided layer with good corrosion resistance. A duplex TiN coating resulted in a further improvement of the corrosion resistance. Comparing cathodic arc and PBII&D coating techniques, the last one gives the thickest film and also the best corrosion behavior with good adhesion. © 2013 Elsevier B.V.  |l eng 
536 |a Detalles de la financiación: Bundesministerium für Bildung und Forschung, ARG 09/006 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva, AL/09/03 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 1807 
536 |a Detalles de la financiación: Universidad Tecnológica Nacional, 25/D046 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 11220090100219 
536 |a Detalles de la financiación: The authors would like to acknowledge the financial supports from the following agencies: Universidad Tecnológica Nacional (Project 25/D046 ), CONICET ( PIP 11220090100219 ), ANPCyT ( PICT 1807 ), Program of Scientific and Technological Cooperation between Ministerio de Ciencia, Tecnología e Innovación Productiva of Argentina (MINCYT, Project Code AL/09/03 ) and Bundesministerium für Bildung und Forschung (BMBF, Project Code ARG 09/006 ) of Germany. 
593 |a Corrosion Division, INTEMA, Faculty of Engineering, University of Mar del Plata, Juan B. Justo 4302, Mar del Plata, Argentina 
593 |a Leibniz Institute of Surface Modification (IOM), Permoserstr, 15, 04318 Leipzig, Germany 
593 |a Surface Engineering Group, Universidad Tecnológica Nacional (UTN-FRCU), Ing. Pereira 676, E3264BTD Concepción del Uruguay, Argentina 
593 |a INFIP (CONICET-University of Buenos Aires), Ciudad Universitaria, Pab. 1, 1428 Ciudad de Buenos Aires, Argentina 
690 1 0 |a CORROSION RESISTANCE 
690 1 0 |a PLASMA ION IMPLANTATION 
690 1 0 |a PLASMA NITRIDING 
690 1 0 |a TIN COATING 
690 1 0 |a CYCLIC POTENTIODYNAMIC POLARIZATION 
690 1 0 |a LOCALIZED CORROSION RESISTANCES 
690 1 0 |a PLASMA BASED ION IMPLANTATION AND DEPOSITION 
690 1 0 |a PLASMA IMMERSION ION IMPLANTATION 
690 1 0 |a PLASMA ION IMPLANTATION 
690 1 0 |a PLASMA NITRIDING 
690 1 0 |a TIN COATING 
690 1 0 |a TRIBOLOGICAL PROPERTIES 
690 1 0 |a AUSTENITIC STAINLESS STEEL 
690 1 0 |a CHEMICAL INDUSTRY 
690 1 0 |a CORROSIVE EFFECTS 
690 1 0 |a DEPOSITION 
690 1 0 |a HARD COATINGS 
690 1 0 |a ION IMPLANTATION 
690 1 0 |a IONS 
690 1 0 |a MICROSTRUCTURE 
690 1 0 |a NITRIDING 
690 1 0 |a OILS AND FATS 
690 1 0 |a PLASMA DEPOSITION 
690 1 0 |a PLASMAS 
690 1 0 |a TITANIUM NITRIDE 
690 1 0 |a CORROSION RESISTANCE 
700 1 |a Lutz, J. 
700 1 |a Brühl, S.P. 
700 1 |a Fazio, M. 
700 1 |a Márquez, Adriana Beatriz 
700 1 |a Mändl, S. 
700 1 |a Manova, D. 
700 1 |a Simison, S.N. 
773 0 |d 2013  |g v. 223  |h pp. 41-46  |p Surf. Coat. Technol.  |x 02578972  |w (AR-BaUEN)CENRE-6945  |t Surface and Coatings Technology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875920149&doi=10.1016%2fj.surfcoat.2013.02.025&partnerID=40&md5=5b943d3d5422683ab44e73679590db50  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.surfcoat.2013.02.025  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_02578972_v223_n_p41_Escalada  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02578972_v223_n_p41_Escalada  |y Registro en la Biblioteca Digital 
961 |a paper_02578972_v223_n_p41_Escalada  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85234