Intracranial aneurysm wall motion and wall shear stress from 4D computerized tomographic angiography images
It is widely accepted that wall shear stress is associated to aneurysm formation, growth and rupture. Early identification of potential risk factors may contribute to decide the treatment and improve patient care. Previous studies have shown associations between high aneurysm wall shear stress value...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , |
| Formato: | Acta de conferencia Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2013
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 10192caa a22009497a 4500 | ||
|---|---|---|---|
| 001 | PAPER-24265 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205605.0 | ||
| 008 | 190411s2013 xx ||||fo|||| 10| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84878307072 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Castro, M.A. | |
| 245 | 1 | 0 | |a Intracranial aneurysm wall motion and wall shear stress from 4D computerized tomographic angiography images |
| 260 | |c 2013 | ||
| 270 | 1 | 0 | |m Grupo de Investigación Y Desarrollo en Bioingeniería, Regional Buenos Aires, CONICET, Universidad Tecnológica Nacional, Medrano 951, Ciudad de Buenos Aires, CP 1179, Argentina |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Hwang, S., Kim, K., Nam, T., A pseudoaneurysm appeared after rebleeding (2007) Journal of Korean Neurosurgical Society, 41, pp. 134-136 | ||
| 504 | |a Wiebers, D.O., International study of unruptured intracranial aneurysms investigators. Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment (2003) Lancet, 362, pp. 103-110 | ||
| 504 | |a Cebral, J.R., Castro, M.A., Burgess, J.E., Pergolizi, R.S., Sheridan, M.J., Putman, C.M., Characterization of cerebral aneurysmfor assessing risk of rupture using patient-specific computational hemodynamics models (2005) Am J Neuroradiol, 26, pp. 2550-2559 | ||
| 504 | |a Castro, M.A., Putman, C.M., Cebral, J.R., Hemodynamic patterns of anterior communicating artery aneurysms: A possible association with rupture (2009) Am J Neuroradiol, 30 (2), pp. 297-302 | ||
| 504 | |a Castro, M.A., Putman, C.M., Radaelli, A., Frangi, A.F., Cebral, J.R., Hemodynamics and rupture of terminal cerebral aneurysms (2009) Acad Radiol, 16 (19), pp. 1201-1207 | ||
| 504 | |a Shojima, M., Oshima, M., Takagi, K., Torii, R., Hayakawa, M., Katada, K., Morita, A., Kirino, T., Magnitude and role of wall shear stress on cerebral aneurysm: Computational fluid dynamic study of 20 middle cerebral artery aneurysms (2004) Stroke, 35, pp. 2500-2505 | ||
| 504 | |a Castro, M.A., Putman, C.M., Cebral, J.R., Computational fluid dynamics modeling of intracranial aneurysms: Effects of parent artery segmentation on intra-aneurysmal hemodynamics (2006) Am J Neuroradiol, 27, pp. 1703-1709 | ||
| 504 | |a Castro, M.A., Putman, C.M., Cebral, J.R., Effects of parent vessel geometry on intraaneurysmal flow pattern (2006) Proc. SPIE Medical Imaging 2006: Physics of Medical Imaging Image Reconstruction, 6143, pp. 123-131 | ||
| 504 | |a Cebral, J.R., Sheridan, M.J., Putman, C.M., Hemodynamics and bleb formation in intracranial aneurysms (2010) Am J Neuroradiol, 31, pp. 304-310 | ||
| 504 | |a Castro, M.A., Putman, C.M., Cebral, J.R., Computational analysis of anterior communicating artery aneurysm shear stress before and after aneurysm formation (2011) Journal of Physics C.S., 32, pp. 1-7 | ||
| 504 | |a Kulcsar, Z., Ugron, A., Marosfo, M., Berentei, Z., Paal, G., Szikora, I., Hemodynamics of cerebral aneurysm initiation: The role of wall shear stress and spatial wall shear stress gradient (2011) Am J Neuroradiol, 32 (3), pp. 587-594 | ||
| 504 | |a Yaghmai, V., Rohany, M., Shaibani, A., Huber, M., Soud, H., Russell, E.J., Walker, M.T., Pulsatility imaging of saccular aneurysm model by 64-slice CT with dynamic multiscan technique (2007) J Vasc Intervent Radiol, 18, pp. 785-788 | ||
| 504 | |a Boecher-Schwarz, H.G., Ringel, K., Kopacz, L., Heimann, A., Kempski, O., Ex vivo study of the physical effect of coils on pressure and flow dynamics in experimental aneurysms (2000) Am J Neuroradiol, 21, pp. 1532-1536 | ||
| 504 | |a Ueno, J., Matsuo, T., Sugiyama, K., Okeda, R., Mechanism underlying the prevention of aneurismal rupture by coil embolization (2002) J Med Dental Sci., 49, pp. 135-141 | ||
| 504 | |a Zhang, C., Villa Uriol, M.C., De Craene, M., Pozo, J.M., Frangi, A.F., Time-resolved 3D rotational angiography reconstruction: Towards cerebral aneurysm pulsatile analysis (2008) Int J Comput Assist Radiol Surg, 3, pp. S44-S46 | ||
| 504 | |a Oubel, E., Cebral, J.R., De Craene, M., Blanc, R., Blasco, R., Macho, J., Putman, C.M., Frangi, A.F., Wall motion setimation in intracranial aneurysms (2010) Physiol Meas, 31, pp. 1119-1135 | ||
| 504 | |a Dempere-Marco, L., Oubel, E., Castro, M.A., Putman, C.M., Frangi, A.F., Cebral, J.R., Estimation of wall motion in intracranial aneurysms and its effects on hemodynamic patterns (2006) Lecture Notes in Computer Science, 4191, pp. 438-445 | ||
| 504 | |a Castro, M.A., Putman, C.M., Cebral, J.R., Computational hemodynamics of cerebral aneurysms: Assessing the risk of rupture (2008) VDM, , Verlag | ||
| 504 | |a Yim, P., Vasbinder, G.B., Ho, V.B., Choyke, P.L., Isosurfaces as deformable models for magnetic resonance angiography (2003) IEEE - Trans Med Imag, 22 (7), pp. 875-881 | ||
| 504 | |a Löhner, R., Extensions and improvements of the advancing front grid generation technique (1996) Comp Meth App Mech Eng, 5, pp. 119-132 | ||
| 504 | |a Löhner, R., Regridding surface triangulations (1996) J Comput Phys, 126, pp. 1-10 | ||
| 504 | |a Löhner, R., Automatic unstructured grid generators (1997) Finite Elements Analysis Design, 25, pp. 111-134 | ||
| 504 | |a Mazumdar, J.N., (1992) Biofluid Mechanics, , World Scientific, Singapore | ||
| 504 | |a Cebral, J.R., Castro, M.A., Putman, C.M., Alperin, N., Flow-area relationship in internal carotid and vertebral arteries (2008) Physiol Meas, 29 (10), pp. 585-594 | ||
| 504 | |a Sherman, T.F., On connecting large vessels to small, The meaning of Murray's law (1981) J Gen Physiol, 78, pp. 431-453 | ||
| 504 | |a Womersley, J.R., Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known (1955) J Physiol, 127, pp. 553-563 | ||
| 504 | |a Taylor, C.A., Hughes, T.J.R., Zarins, C.K., Finite element modeling of blood flow in arteries (1998) Comp Meth Appl Mech Engin, 158, pp. 155-196 | ||
| 504 | |a Cebral, J.R., Castro, M.A., Appanaboyina, S., Putman, C., Millán, D., Frangi, A., Efficient pipeline for image- based patient-specific analysis of cerebral aneurysms hemodynamics: Technique and sensitivity (2005) IEEE - Trans Med Imag - Special Issue on Vascular Imaging, 24 (4), pp. 457-467A4 - The Society of Photo-Optical Instrumentation Engineers (SPIE); Aeroflex Incorporated; CREOL - Univ. Central Florida, Coll. Opt. Photonics; DQE Instruments, Inc.; Medtronic, Inc.; PIXELTEQ, Multispectral Sensing and Imaging | ||
| 520 | 3 | |a It is widely accepted that wall shear stress is associated to aneurysm formation, growth and rupture. Early identification of potential risk factors may contribute to decide the treatment and improve patient care. Previous studies have shown associations between high aneurysm wall shear stress values and both elevated risk of rupture and regions of aneurysm growing. Based on the assumption that damaged regions of the endothelium have different mechanical properties, regions with differentiated wall displacement amplitudes are expected. A previous approach based on the analysis of bidimensional dynamic tomographic angiography had been designed to investigate those correlations, but its main limitation was that wall motion was measured in a selected plane. The purpose of this work is to overcome some of those limitations. High time and spatial resolution 4D computerized tomographic angiography images of cerebral aneurysms were acquired and analyzed in order to identify and characterize wall motion. Images were filtered and segmented at nineteen time points during the cardiac cycle and displacement was estimated within the aneurysm sac and compared to wall shear stress distributions from patient-specific unsteady finite element blood flow simulations. © 2013 SPIE. |l eng | |
| 593 | |a Grupo de Investigación Y Desarrollo en Bioingeniería, Regional Buenos Aires, CONICET, Universidad Tecnológica Nacional, Medrano 951, Ciudad de Buenos Aires, CP 1179, Argentina | ||
| 593 | |a De Ingeniería Ciencias Exactas y Naturales, Universidad Favaloro, Solís 453, Ciudad de Buenos Aires, CP 1078, Argentina | ||
| 593 | |a Interventional Neuroradiology, Inova Fairfax Hospital, 3300 Gallows Road, Falls Church, VA, United States | ||
| 593 | |a Center for Computational Fluid Dynamics, George Mason University, Fairfax, VA, United States | ||
| 690 | 1 | 0 | |a 4DCTA |
| 690 | 1 | 0 | |a CEREBRAL ANEURYSMS |
| 690 | 1 | 0 | |a IMAGE SEGMENTATION |
| 690 | 1 | 0 | |a WALL MOTION |
| 690 | 1 | 0 | |a WALL SHEAR STRESS |
| 690 | 1 | 0 | |a 4DCTA |
| 690 | 1 | 0 | |a ANGIOGRAPHY IMAGES |
| 690 | 1 | 0 | |a BLOOD FLOW SIMULATIONS |
| 690 | 1 | 0 | |a CEREBRAL ANEURYSMS |
| 690 | 1 | 0 | |a DISPLACEMENT AMPLITUDES |
| 690 | 1 | 0 | |a INTRACRANIAL ANEURYSMS |
| 690 | 1 | 0 | |a WALL MOTION |
| 690 | 1 | 0 | |a WALL SHEAR STRESS |
| 690 | 1 | 0 | |a HEMODYNAMICS |
| 690 | 1 | 0 | |a IMAGE SEGMENTATION |
| 690 | 1 | 0 | |a MECHANICAL PROPERTIES |
| 690 | 1 | 0 | |a MEDICAL APPLICATIONS |
| 690 | 1 | 0 | |a MOLECULAR IMAGING |
| 690 | 1 | 0 | |a PATIENT TREATMENT |
| 690 | 1 | 0 | |a TOMOGRAPHY |
| 690 | 1 | 0 | |a ANGIOGRAPHY |
| 700 | 1 | |a Olivares, M.C.A. | |
| 700 | 1 | |a Putman, C.M. | |
| 700 | 1 | |a Cebral, J.R. | |
| 711 | 2 | |c Lake Buena Vista, FL |d 10 February 2013 through 13 February 2013 |g Código de la conferencia: 97194 | |
| 773 | 0 | |d 2013 |g v. 8672 |p Progr. Biomed. Opt. Imaging Proc. SPIE |n Progress in Biomedical Optics and Imaging - Proceedings of SPIE |x 16057422 |z 9780819494467 |t Medical Imaging 2013: Biomedical Applications in Molecular, Structural, and Functional Imaging | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84878307072&doi=10.1117%2f12.2005982&partnerID=40&md5=ff5ca7720a808dc2f490315e8012dea0 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1117/12.2005982 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_16057422_v8672_n_p_Castro |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_16057422_v8672_n_p_Castro |y Registro en la Biblioteca Digital |
| 961 | |a paper_16057422_v8672_n_p_Castro |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/conferenceObject |a info:ar-repo/semantics/documento de conferencia |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 85218 | ||