Non-perturbative λΦ4 in D = 1 + 1: An example of the constructive quantum field theory approach in a schematic way

During the '70, several relativistic quantum field theory models in D = 1 + 1 and also in D = 2 + 1 have been constructed in a non-perturbative way. That was done in the so-called constructive quantum field theory approach, whose main results have been obtained by a clever use of Euclidean func...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gueron, J.
Otros Autores: Leston, M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07237caa a22006017a 4500
001 PAPER-24183
003 AR-BaUEN
005 20230518205559.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84884547355 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gueron, J. 
245 1 0 |a Non-perturbative λΦ4 in D = 1 + 1: An example of the constructive quantum field theory approach in a schematic way 
260 |c 2013 
270 1 0 |m Departamento de Matematica, Facultad de Ciencias Físico Matemáticas e Ingeniería, Universidad Catolica Argentina, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Summers, S.J., A Perspective on Constructive Quantum Field Theory, , arXiv:1203.3991 [ INSPIRE ] 
504 |a Jaffe, A., Divergences of Perturbations Theory for Bosons (1965) Comm. Math. Phys., 1, p. 127. , 193979 1965CMaPh.1.127J 0127.19706 10.1007/BF01646496 
504 |a Glimm, J., Jaffe, A.M., A λψ 4 quantum field theory without cutoffs. 1 (1968) Phys. Rev., 176, p. 1945. , 247845 1968PhRv.176.1945G 0177.28203 10.1103/PhysRev.176.1945 
504 |a Glimm, J., Jaffe, A., (1987) Quantum Physics: A Functional Point of View, , Springer 
504 |a Jaffe, A., (2007) Quantum Theory and Relativity, in Contemporary Mathematics: Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, , Robert S. Doran, Calvin C. Moore and Robert J. Zimmer eds 
504 |a Jaffe, A., Wick Polynomials at a Fixed Time (1966) J. Math. Phys., 7, p. 1250. , 220489 1966JMP.7.1250J 10.1063/1.1705027 
504 |a Dimock, J., (2001) Quantum Mechanics A Quantum Field Theory. A Mathematical Premier, , Cambridge University Press Cambridge U.K 
504 |a Simon, B., (1974) The P (Φ)2 Euclidean (Quantum) Field Theory, Princeton Series in Physics, , Princeton University Press Princeton, U.S.A 
504 |a Streater, R.F., Wightman, A., (2000) PCT, Spin, Statistics and All That, , Princeton University Press Princeton, U.S.A [1st ed. Benjamin, New York, U.S.A. (1964)] 
504 |a Osterwalder, K., Schrader, R., Axioms for Euclidean Green's functions, II (1975) Comm. Math. Phys, 42, p. 281. , 376002 1975CMaPh.42.281O 0303.46034 10.1007/BF01608978 
504 |a Reed, M., Simon, B., (1975) Methods of Modern Mathematical Physics, 2. , Academic Press 
504 |a Van Hove, L., Les Dificultes of Divergences Pour un Model Particular de Champ Quantifie (1952) Physica, 18, p. 145. , 49093 1952Phy.18.145V 0046.21307 10.1016/S0031-8914(52)80017-5 
504 |a Earman, J., Fraser, D., (2005) Haag's Theorem and Its Implications for the Foundations of Quantum Field Theory, , http://philsci-archive.pitt.edu/2673 
504 |a Glimm, J., Jaffe, A., Spencer, T., The Wightman Axioms and the Particle Structure of P (Φ)2 QFT model (1974) Ann. Math, 100, p. 585. , 363256 10.2307/1970959 
504 |a Glimm, J., Jaffe, A., Spencer, T., The Particle Structure of the Weakly Coupled P(Φ)2 Model and Other Applications of High Temperature Expansions, Part II: The Cluster Expansion, in Constructive Quantum Field Theory (1973) Lect. Notes Phys., 25, p. 132. , G. Velo and A.S. Wightman eds 
504 |a Ruelle, D., On the Asymptotic Condition in Quantum Field Theory (1962) Helv. Phys. Acta, 35, p. 147. , 141406 0158.45702 
504 |a Eckmann, J., Epstein, H., Borel summability of the mass and the S-matrix in ψ 4 models (1979) Commun. Math. Phys., 68, p. 245. , 544880 1979CMaPh.68.245E 10.1007/BF01221126 
504 |a Dimock, J., Asymptotic perturbation expansion in the P (Φ)2 quantum field theory (1974) Commun. Math. Phys., 35, p. 347. , 334756 1974CMaPh.35.347D 10.1007/BF01646354 
504 |a Eckmann, J.P., Epstein, H., Frolich, J., Asymptotic Perturbation Expansion for the S-matrix and the Definition of Time-Ordered Functions in Relativistic Quantum Field Theory Models (1976) Ann. Inst. Henri Poincare, 25, p. 1 
504 |a Eckmnnan, J.P., Magnen, J., Seneor, R., Decay Properties and Borel Summability for the Schwinger Functions in P (Φ)2 Theories (1975) Commun. Math. Phys., 39, p. 251. , 1974CMaPh.39.251E 10.1007/BF01705374 
504 |a Fernandez, R., Froehlich, J., Sokal, A.D., (1992) Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory, , Springer 
504 |a Glimm, J., Jaffe, A., Positivity of the φ4/3 Hamiltonian (1973) Fortsch. Physik., 21, p. 327. , 408581 1973ForPh.21.327G 10.1002/prop.19730210702 
504 |a Magnen, J., Rivasseau, V., Constructive ψ 4 field theory without tears (2008) Annales Henri Poincaré, 9, p. 403. , 2399194 2008AnHP.9.403M 1141.81022 10.1007/s00023-008-0360-1 [arXiv:0706.2457] 
520 3 |a During the '70, several relativistic quantum field theory models in D = 1 + 1 and also in D = 2 + 1 have been constructed in a non-perturbative way. That was done in the so-called constructive quantum field theory approach, whose main results have been obtained by a clever use of Euclidean functional methods. Although in the construction of a single model there are several technical steps, some of them involving long proofs, the constructive quantum field theory approach contains conceptual insights about relativistic quantum field theory that deserved to be known and which are accessible without entering in technical details. The purpose of this note is to illustrate such insights by providing an oversimplified schematic exposition of the simple case of λΦ4 (with m > 0) in D = 1 + 1. Because of the absence of ultraviolet divergences in its perturbative version, this simple example - although does not capture all the difficulties in the constructive quantum field theory approach - allows to stress those difficulties inherent to the non-perturbative definition. We have made an effort in order to avoid several of the long technical intermediate steps without missing the main ideas and making contact with the usual language of the perturbative approach. © 2013 SISSA, Trieste, Italy.  |l eng 
593 |a Departamento de Matematica, Facultad de Ciencias Físico Matemáticas e Ingeniería, Universidad Catolica Argentina, Buenos Aires, Argentina 
593 |a Instituto de Astronomía y Física Del Espacio, Pabellón IAFE-CONICET, Ciudad Universitaria, C.C. 67 Suc. 28, Buenos Aires, Argentina 
690 1 0 |a FIELD THEORIES IN LOWER DIMENSIONS 
690 1 0 |a NONPERTURBATIVE EFFECTS 
700 1 |a Leston, M. 
773 0 |d 2013  |g v. 2013  |k n. 8  |p J. High Energy Phys.  |x 11266708  |t Journal of High Energy Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884547355&doi=10.1007%2fJHEP08%282013%29052&partnerID=40&md5=4ef0380ea87ffaf047804f09e4500ab4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/JHEP08(2013)052  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_11266708_v2013_n8_p_Gueron  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_11266708_v2013_n8_p_Gueron  |y Registro en la Biblioteca Digital 
961 |a paper_11266708_v2013_n8_p_Gueron  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85136