Contribution of vasoactive intestinal peptide to immune homeostasis in trophoblast-maternal leukocyte interaction under LPS stimulation

Background/Aims: The maternal-fetal interface is a unique immunological site that generates an adequate microenvironment during pregnancy, recognizing and eliminating infections and tolerating the trophoblast/placenta unit. For that purpose, trophoblast cells display several tolerogenic mechanisms t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fraccaroli, L.
Otros Autores: Grasso, E., Hauk, V., Cortelezzi, M., Pérez Leirós, C., Ramhorst, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 17743caa a22017657a 4500
001 PAPER-24125
003 AR-BaUEN
005 20230518205555.0
008 190411s2013 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84885486812 
024 7 |2 cas  |a nitrite, 14797-65-0; vasoactive intestinal polypeptide, 37221-79-7 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a NROIE 
100 1 |a Fraccaroli, L. 
245 1 0 |a Contribution of vasoactive intestinal peptide to immune homeostasis in trophoblast-maternal leukocyte interaction under LPS stimulation 
260 |c 2013 
270 1 0 |m Laboratory of Immunopharmacology, School of Sciences, University of Buenos Aires, Int. Guiraldes 2160 Piso 4, Buenos Aires C1428EHA, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Koga, K., Cardenas, I., Aldo, P., Abrahams, V.M., Peng, B., Fill, S., Activation of TLR3 in the trophoblast is associated with preterm delivery (2009) Am J Reprod Immunol, 61, pp. 196-212 
504 |a Koga, K., Paulomi, A., Mor, G., Toll-like receptors and pregnancy: Trophoblast as modulators of the immune response (2009) J Obstest Gynecol Res, 35, pp. 191-202 
504 |a Chaouat, G., Ledee-Bataille, N., Dubanchet, S., Zourbas, S., Sandra, O., Martal, J., Th1/Th2 paradigm in pregnancy: Paradigm lost? Cytokines in pregnancy/early abortion: Reexamining the Th1/Th2 paradigm (2004) International Archives of Allergy and Immunology, 134 (2), pp. 93-119. , DOI 10.1159/000074300 
504 |a Clark, D.A., Chaouat, G., Clark, D.A., Gorczynski, R.M., Thinking outside the box: Mechanisms of environmental selective pressures on the outcome of the materno-fetal relationship (2002) American Journal of Reproductive Immunology, 47 (5), pp. 275-282. , DOI 10.1034/j.1600-0897.2002.01093.x 
504 |a Fest, S., Aldo, P.B., Abrahams, V.M., Visintin, I., Alvero, A., Chen, R., Chavez, S.L., Mor, G., Trophoblast-macrophage interactions: A regulatory network for the protection of pregnancy (2007) American Journal of Reproductive Immunology, 57 (1), pp. 55-66. , DOI 10.1111/j.1600-0897.2006.00446.x 
504 |a Goldenberg, R.L., Culhane, J.F., Iams, J.D., Romero, R., Epidemiology and causes of preterm birth (2008) Lancet, 5, pp. 75-84 
504 |a Digiulio, D.B., Gervasi, M., Romero, R., Mazaki- Tovi, S., Vaisbuch, E., Kusanovic, J.P., Seok, K.S., Relman, D.A., Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence- based methods (2010) J Perinat Med, 38, pp. 503-513 
504 |a Kim, C.J., Romero, R., Kusanovic, J.P., Yoo, W., Dong, Z., Topping, V., Gotsch, F., Kim, J.S., The frequency, clinical significance, and pathological features of chronic chorioamnionitis: A lesion associated with spontaneous preterm birth (2010) Mod Pathol, 23, pp. 1000-1011 
504 |a Cardenas, I., Means, R., Aldo, P., Koga, K., Lang, L., Booth, C., Manzur, A., Mor, G., Viral infection of the placenta leads to fetal inflammation and sensitization to bacterial products predisposing to preterm labor (2010) J Immunol, 15, pp. 1248-1257 
504 |a Mor, G., Inflammation and pregnancy: The role of toll-like receptors in trophoblast-immune interaction (2008) Annals of the New York Academy of Sciences, 1127, pp. 121-128. , DOI 10.1196/annals.1434.006, Assessment of Human Reproductive Function 
504 |a Abrahams, V.M., Bole-Aldo, P., Kim, Y.M., Straszewski-Chavez, S.L., Chaiworapongsa, T., Romero, R., Mor, G., Divergent trophoblast responses to bacterial products mediated by TLRs (2004) Journal of Immunology, 173 (7), pp. 4286-4296 
504 |a Aluvihare, V.R., Kallikourdis, M., Betz, A.G., Regulatory T cells mediate maternal tolerance to the fetus (2004) Nature Immunology, 5 (3), pp. 266-271. , DOI 10.1038/ni1037 
504 |a Larocca, L., Ramhorst, R., Roca, V., Calafat, M., Aisemberg, J., Franchi, A., Perez Leiros, C., Neuroimmune- endocrine interactions during early pregnancy in an autoimmune context: Focus on macrophage activation (2008) Neuroimmunemodulation, 15, pp. 84-90 
504 |a Terness, P., Kallikourdis, M., Betz, A.G., Rabinovich, G.A., Saito, S., Clark, D.A., Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells (2007) American Journal of Reproductive Immunology, 58 (3), pp. 238-254. , DOI 10.1111/j.1600-0897.2007.00510.x 
504 |a Li, J.M., Southerland, L., Hossain, M.S., Giver, C.R., Wang, Y., Darlak, K., Harris, W., Waller, E.K., Absence of vasoactive intestinal peptide expression in hematopoietic cells enhances Th1 polarization and antiviral immunity in mice (2011) J Immunol, 187, pp. 1057-1065 
504 |a Delgado, M., Abad, C., Martinez, C., Leceta, J., Gomariz, R.P., Vasoactive intestinal peptide prevents experimental arthritis by downregulating both autoimmune and inflammatory components of the disease (2001) Nature Medicine, 7 (5), pp. 563-568. , DOI 10.1038/87887 
504 |a Gonzalez-Rey, E., Delgado, M., Vasoactive intestinal peptide and regulatory T-cell induction: A new mechanism and therapeutic potential for immune homeostasis (2007) Trends in Molecular Medicine, 13 (6), pp. 241-251. , DOI 10.1016/j.molmed.2007.04.003, PII S1471491407000676 
504 |a Yadav, M., Goetzl, E.J., Vasoactive intestinal peptide-mediated Th17 differentiation: An expanding spectrum of vasoactive intestinal peptide effects in immunity and autoimmunity (2008) Ann NY Acad Sci, 1144, pp. 83-89 
504 |a Jimeno, R., Gomariz, R.P., Gutierrez-Canas, I., Martinez, C., Juarranz, Y., Leceta, J., New insights into the role of VIP on the ratio of T-cell subsets during the development of autoimmune diabetes (2010) Immunol Cell Biol, 88, pp. 734-745 
504 |a Rosignoli, F., Torroba, M., Juarranz, Y., Gomez, I.A., Martinez, C., Gomariz, R.P., Perez Leiros, C., Leceta, J., VIP and tolerance induction in autoimmunity (2006) Ann NY Acad Sci, 6, pp. 1-6 
504 |a Chorny, A., Gonzalez-Rey, E., Fernandez Martin, A., Ganea, D., Delgado, M., Vasointestinal peptide induces regulatory dendritic cells that prevent acute graft-host disease while maintaining the graft-versus tumor response (2006) Blood, 107, pp. 3787-3794 
504 |a Ekstrom, J., Mansson, B., Tobin, G., Vasoactive intestinal peptide evoked secretion of fluid and protein from rat salivary glands and development of supersensitivity (1983) Acta Physiologica Scandinavica, 119 (2), pp. 169-175 
504 |a Clark, K.E., Mills, E.G., Stys, S.J., Seeds, A.E., Effects of vasoactive polypeptides on the uterine vasculature (1981) American Journal of Obstetrics and Gynecology, 139 (2), pp. 182-188 
504 |a Jovanovic, A., Jovanovic, S., Tulic, I., Grbovic, L., Predominant role for nitric oxide in the relaxation induced by vasoactive intestinal polypeptide in human uterine artery (1998) Molecular Human Reproduction, 4 (1), pp. 71-76. , DOI 10.1093/molehr/4.1.71 
504 |a Roca, V., Calafat, M., Larocca, L., Ramhorst, R., Farina, M., Franchi, A.M., Perez Leiros, C., Potential immunomodulatory role of VIP in the implantation sites of prediabetic nonobese diabetic mice (2009) Reproduction, 138, pp. 733-742 
504 |a Fraccaroli, L., Alfieri, J., Larocca, L., Calafat, M., Roca, V., Lombardi, E., Ramhorst, R., Perez Leiros, C., VIP modulates the pro-inflammatory maternal response inducing tolerance to trophoblast cells (2009) Br J Pharmacol, 156, pp. 116-126 
504 |a Straszewski-Chavez, S.L., Abrahams, V.M., Alvero, A.B., Aldo, P.B., Ma, Y., Guller, S., Romero, R., Mor, G., The isolation and characterization of a novel telomerase immortalized first trimester trophoblast cell line,Swan 71 (2009) Placenta, 30, pp. 939-948 
504 |a Ding, A.H., Nathan, C.F., Stuehr, D.J., Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: Comparison of activating cytokines and evidence for independent production (1988) J Immunol, 141, pp. 2404-2412 
504 |a Alexander, S.P., Mathie, A., Peters, J.A., Guide to Receptors and Channels (GRAC), 3rd edition (2008) Br J Pharmacol, 153 (SUPPL. 2), pp. S1-S209 
504 |a Ma, Y., Mor, G., Abrahams, V.M., Buhimschi, I.A., Buhimschi, C.S., Guller, S., Alterations in syncytiotrophoblast cytokine expression following treatment with lipopolysaccharide (2006) American Journal of Reproductive Immunology, 55 (1), pp. 12-18. , DOI 10.1111/j.1600-0897.2005.00347.x 
504 |a Aisemberg, J., Vercelli, C., Wolfson, M., Salazar, A.I., Osycka-Salut, C., Billi, S., Inflammatory agents involved in septic miscarriage (2010) Neuroimmunomodulation, 17, pp. 150-152 
504 |a Martinez, C., Delgado, M., Abad, C., Gomariz, R.P., Ganea, D., Leceta, J., Regulation of VIP production and secretion by murine lymphocytes (1999) Journal of Neuroimmunology, 93 (1-2), pp. 126-138. , DOI 10.1016/S0165-5728(98)00216-1, PII S0165572898002161 
504 |a Mor, G., Cardenas, I., The immune system in pregnancy: A unique complexity (2010) Am J Reprod Immunol, 63, pp. 425-433 
504 |a Vercelli, C.A., Aisemberg, J., Billi, S., Wolfson, M.L., Franchi, A.M., Endocannabinoid system and nitric oxide are involved in the deleterious effects of lipopolysaccharide on murine decidua (2009) Placenta, 30, pp. 579-584 
504 |a Murphy, S.P., Fast, L.D., Hanna, N.N., Sharma, S., Uterine NK cells mediate inflammation-induced fetal demise in IL-10-null mice (2005) Journal of Immunology, 175 (6), pp. 4084-4090 
504 |a Anton, L., Brown, A., Parry, S., Elovitz, M., Lipopolysaccharide induces cytokine production and decreases extravillous trophoblast invasion through a mitogen-activated protein kinase- mediated pathway: Possible mechanisms of first trimester placental dysfunction (2012) Hum Reprod, 1, pp. 61-72 
504 |a Uh, A., Nicholson, R., Gonzalez, G., Simmons, C., Gombart, A., Smith, R., Equils, O., Lipopolysaccharide (LPS) stimulation of trophoblasts induces corticotrophin-releasing hormone (CRH) expression through MyD88 (2008) Am J Obstet Gynecol, 199 (317), pp. e1-e317. , e6 
504 |a McLean, M., Bistis, A., Davies, J., Woods, R., Lowry, P., Smith, R., A placental clock controlling the length of human pregnancy (1995) Nat Med, 1, pp. 460-463 
504 |a Larocca, L., Calafat, M., Roca, V., Franchi, A.M., Leiros, C.P., VIP limits LPS-induced nitric oxide production through IL-10 in NOD mice macrophages (2007) International Immunopharmacology, 7 (10), pp. 1343-1349. , DOI 10.1016/j.intimp.2007.05.017, PII S1567576907001567 
504 |a Gomariz, R.P., Martinez, C., Abad, C., Leceta, J., Delgado, M., Immunology of VIP: A review and therapeutical perspectives (2001) Current Pharmaceutical Design, 7 (2), pp. 89-111. , DOI 10.2174/1381612013398374 
504 |a Delgado, M., Munoz-Elias, E.J., Gomariz, R.P., Ganea, D., Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages: In vitro and in vivo studies (1999) Journal of Immunology, 162 (3), pp. 1707-1716 
504 |a Gonzalez-Rey, E., Anderson, P., Delgado, M., Emerging roles of vasoactive intestinal peptide: A new approach for autoimmune therapy (2007) Ann Rheum Dis, 66, pp. 70-76 
504 |a Mosser, D.M., Edwards, J.P., Exploring the full spectrum of macrophage activation (2008) Nat Rev Immunol, 8, pp. 958-969 
504 |a Rosignoli, F., Torroba, M., Juarranz, Y., Garcia-Gomez, M., Martinez, C., Gomariz, R.P., Perez-Leiros, C., Leceta, J., VIP and tolerance induction in autoimmunity (2006) Annals of the New York Academy of Sciences, 1070, pp. 525-530. , DOI 10.1196/annals.1317.073 
504 |a Larocca, L., Hauk, V., Calafat, M., Roca, V., Fraccaroli, L., Franchi, A., Ramhorst, R., Perez Leiros, C., Modulation of macrophage inflammatory profile in pregnant nonobese diabetic (NOD) mice (2011) Mol Cell Endocrinol, 20, pp. 112-118 
504 |a Weiss, G., Goldsmith, L.T., Taylor, R.N., Bellet, D., Taylor, H.S., Inflammation in reproductive disorders (2009) Reprod Sci, 16, pp. 216-229 
504 |a Paria, B.C., Reese, J., Das, S.K., Dey, S.K., Deciphering the cross-talk of implantation: Advances and challenges (2002) Science, 296 (5576), pp. 2185-2188. , DOI 10.1126/science.1071601 
520 3 |a Background/Aims: The maternal-fetal interface is a unique immunological site that generates an adequate microenvironment during pregnancy, recognizing and eliminating infections and tolerating the trophoblast/placenta unit. For that purpose, trophoblast cells display several tolerogenic mechanisms to allow fetal survival, such as production of the neuropeptide vasoactive intestinal peptide (VIP). Here we investigated the contribution of VIP to maintain homeostasis at the maternal-placental interface under lipopolysaccharide (LPS) stimulation. Methods: We performed cocultures between trophoblast cells (Swan-71 cell line) and maternal leukocytes obtained from fertile women as an in vitro model of maternal-placental interaction, and we focused on the effects of LPS on the modulation of VIP and their receptors (VPAC1 and VPAC 2). Results: VIP could prevent the upregulation of IL-6, MCP-1, and nitrite production and maintain the production of IL-10 and TGF-β under LPS (10 μg/ml) stimulation after 48 h of coculture. To gain deeper insight into the mechanisms of how VIP could contribute to a tolerogenic microenvironment even in the presence of LPS, we investigated VIP production by maternal leukocytes and observed a significant increase in the frequency of CD4+VIP+ cells after interaction with Swan-71 cells in the presence of LPS. LPS increased VIP and inducible receptor VPAC2 expression directly on trophoblast cells in a dose- and time-dependent manner. Conclusions: The present results suggest that VIP might act as an additional homeostatic mechanism during early stages at the maternal-placental interface to control exacerbated inflammatory responses such as the ones observed in intrauterine infections. © 2013 S. Karger AG, Basel.  |l eng 
593 |a Laboratory of Immunopharmacology, School of Sciences, University of Buenos Aires, Int. Guiraldes 2160 Piso 4, Buenos Aires C1428EHA, Argentina 
593 |a Argentinean Society for Gynecology and Endocrinology Reproduction (SAEGRE), Buenos Aires, Argentina 
690 1 0 |a EARLY PREGNANCY 
690 1 0 |a HUMAN IMPLANTATION 
690 1 0 |a TOLERANCE AND PREGNANCY 
690 1 0 |a VASOACTIVE INTESTINAL PEPTIDE 
690 1 0 |a INTERLEUKIN 10 
690 1 0 |a INTERLEUKIN 6 
690 1 0 |a LIPOPOLYSACCHARIDE 
690 1 0 |a MONOCYTE CHEMOTACTIC PROTEIN 1 
690 1 0 |a NITRITE 
690 1 0 |a TRANSFORMING GROWTH FACTOR BETA 
690 1 0 |a VASOACTIVE INTESTINAL POLYPEPTIDE 
690 1 0 |a VASOACTIVE INTESTINAL POLYPEPTIDE RECEPTOR 1 
690 1 0 |a VASOACTIVE INTESTINAL POLYPEPTIDE RECEPTOR 2 
690 1 0 |a CD14 ANTIGEN 
690 1 0 |a CD19 ANTIGEN 
690 1 0 |a LIPOPOLYSACCHARIDE 
690 1 0 |a VASOACTIVE INTESTINAL POLYPEPTIDE 
690 1 0 |a ARTICLE 
690 1 0 |a CELL INTERACTION 
690 1 0 |a COCULTURE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CYTOKINE PRODUCTION 
690 1 0 |a FEMALE 
690 1 0 |a HUMAN 
690 1 0 |a HUMAN CELL 
690 1 0 |a IMMUNOMODULATION 
690 1 0 |a IMMUNOSTIMULATION 
690 1 0 |a IN VITRO STUDY 
690 1 0 |a LEUKOCYTE 
690 1 0 |a MICROENVIRONMENT 
690 1 0 |a MOTHER 
690 1 0 |a PERIPHERAL BLOOD MONONUCLEAR CELL 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a REVERSE TRANSCRIPTION POLYMERASE CHAIN REACTION 
690 1 0 |a TROPHOBLAST 
690 1 0 |a UPREGULATION 
690 1 0 |a WESTERN BLOTTING 
690 1 0 |a ARTICLE 
690 1 0 |a B LYMPHOCYTE 
690 1 0 |a CD4+ T LYMPHOCYTE 
690 1 0 |a CELL LINE 
690 1 0 |a FLOW CYTOMETRY 
690 1 0 |a IMMUNE HOMEOSTASIS 
690 1 0 |a INFLAMMATION 
690 1 0 |a SWAN 71 CELL LINE 
690 1 0 |a TROPHOBLAST 
690 1 0 |a TROPHOBLAST MATERNAL LEUKOCYTE INTERACTION 
690 1 0 |a CD4-POSITIVE T-LYMPHOCYTES 
690 1 0 |a COCULTURE TECHNIQUES 
690 1 0 |a CYTOKINES 
690 1 0 |a DOSE-RESPONSE RELATIONSHIP, DRUG 
690 1 0 |a FEMALE 
690 1 0 |a FLOW CYTOMETRY 
690 1 0 |a GENE EXPRESSION REGULATION 
690 1 0 |a HUMANS 
690 1 0 |a LEUKOCYTES 
690 1 0 |a LIPOPOLYSACCHARIDES 
690 1 0 |a NITRITES 
690 1 0 |a PREGNANCY 
690 1 0 |a RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE, TYPE II 
690 1 0 |a RECEPTORS, VASOACTIVE INTESTINAL POLYPEPTIDE, TYPE I 
690 1 0 |a TIME FACTORS 
690 1 0 |a TRANSFORMING GROWTH FACTOR BETA 
690 1 0 |a TROPHOBLASTS 
690 1 0 |a VASOACTIVE INTESTINAL PEPTIDE 
650 1 7 |2 spines  |a HOMEOSTASIS 
650 1 7 |2 spines  |a HOMEOSTASIS 
700 1 |a Grasso, E. 
700 1 |a Hauk, V. 
700 1 |a Cortelezzi, M. 
700 1 |a Pérez Leirós, C. 
700 1 |a Ramhorst, R. 
773 0 |d 2013  |g v. 21  |h pp. 21-30  |k n. 1  |p NeuroImmunomodulation  |x 10217401  |t NeuroImmunoModulation 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84885486812&doi=10.1159%2f000355039&partnerID=40&md5=260d4d1ee10af13acb84dc63d4db23d1  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1159/000355039  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10217401_v21_n1_p21_Fraccaroli  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10217401_v21_n1_p21_Fraccaroli  |y Registro en la Biblioteca Digital 
961 |a paper_10217401_v21_n1_p21_Fraccaroli  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85078