Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52

Immunophilins comprise a family of intracellular proteins with peptidyl-prolyl-(cis/trans)-isomerase activity. These foldases are abundant, ubiquitous, and able to bind immunosuppressant drugs, from which the term immunophilin derives. Family members are found in abundance in virtually all organisms...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Erlejman, A.G
Otros Autores: Lagadari, M., Harris, D.C, Cox, M.B, Galigniana, M.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Bentham Science Publishers B.V. 2014
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 26850caa a22021497a 4500
001 PAPER-24065
003 AR-BaUEN
005 20230518205551.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84904465108 
024 7 |2 cas  |a cyclosporin A, 59865-13-3, 63798-73-2; peptidylprolyl isomerase, 95076-93-0; rapamycin, 53123-88-9; tacrolimus, 104987-11-3; Molecular Chaperones; Receptors, Steroid; tacrolimus binding protein 4; tacrolimus binding protein 5; Tacrolimus Binding Proteins 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CPPSC 
100 1 |a Erlejman, A.G. 
245 1 0 |a Molecular chaperone activity and biological regulatory actions of the TPR-domain immunophilins FKBP51 and FKBP52 
260 |b Bentham Science Publishers B.V.  |c 2014 
270 1 0 |m Galigniana, M. D.; IBYME, Vuelta de Obligado 2490, Buenos Aires (C1428ADN), Argentina; email: mgali@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Kang, C.B., Hong, Y., Dhe-Paganon, S., Yoon, H.S., FKBP family proteins: Immunophilins with versatile biological functions (2008) Neurosignals, 16 (4), pp. 318-325 
504 |a Takahashi, K., Uchida, C., Shin, R.W., Shimazaki, K., Uchida, T., Prolyl isomerase, Pin1: New findings of post-translational modifications and physiological substrates in cancer, asthma and Alzheimer's disease (2008) Cell Mol. Life Sci, 65 (3), pp. 359-375 
504 |a Theuerkorn, M., Fischer, G., Schiene-Fischer, C., Prolyl cis/trans isomerase signalling pathways in cancer (2011) Curr. Opin. Pharmacol, 11 (4), pp. 281-287 
504 |a Li, H., Rao, A., Hogan, P.G., Interaction of calcineurin with substrates and targeting proteins (2011) Trends Cell Biol, 21 (2), pp. 91-103 
504 |a Brown, E.J., Albers, M.W., Shin, T.B., Ichikawa, K., Keith, C.T., Lane, W.S., Schreiber, S.L., A mammalian protein targeted by G1- arresting rapamycin-receptor complex (1994) Nature, 369 (6483), pp. 756-758 
504 |a Harding, M.W., Immunophilins, mTOR, and pharmacodynamic strategies for a targeted cancer therapy (2003) Clin. Cancer Res, 9 (8), pp. 2882-2886 
504 |a Touzot, M., Soulillou, J.P., Dantal, J., Mechanistic target of rapamycin inhibitors in solid organ transplantation: From benchside to clinical use (2012) Curr. Opin. Organ Transplant, 17 (6), pp. 626-633 
504 |a Allan, R.K., Ratajczak, T., Versatile TPR domains accommodate different modes of target protein recognition and function (2011) Cell Stress Chaperones, 16 (4), pp. 353-367 
504 |a Das, A.K., Cohen, P.W., Barford, D., The structure of the tetratricopeptide repeats of protein phosphatase 5: Implications for TPR-mediated protein-protein interactions (1998) EMBO J, 17 (5), pp. 1192-1199 
504 |a Aviezer-Hagai, K., Skovorodnikova, J., Galigniana, M., Farchi-pisanty, O., Maayan, E., Bocovza, S., Efrat, Y., Breiman, A., Arabidopsis immunophilins ROF1 (AtFKBP62) and ROF2 (AtFKBP65) exhibit tissue specificity, are heat-stress induced, and bind HSP90 (2007) Plant Mol Biol, 63 (2), pp. 237-255 
504 |a Sumanasekera, W.K., Tien, E.S., Turpey, R., Vanden Heuvel, J.P., Perdew, G.H., Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2 (2003) J. Biol. Chem, 278 (7), pp. 4467-4473 
504 |a Edlich, F., Lucke, C., From cell death to viral replication: The diverse functions of the membrane-associated FKBP38 (2011) Curr. Opin Pharmacol, 11 (4), pp. 348-353 
504 |a Jarczowski, F., Jahreis, G., Erdmann, F., Schierhorn, A., Fischer, G., Edlich, F., FKBP36 is an inherent multifunctional glyceraldehyde-3-phosphate dehydrogenase inhibitor (2009) J. Biol. Chem, 284 (2), pp. 766-773 
504 |a Schiene-Fischer, C., Aumuller, T., Fischer, G., Peptide Bond cis/trans Isomerases: A Biocatalysis Perspective of Conformational Dynamics in Proteins (2013) Top. Curr. Chem, 328, pp. 35-67 
504 |a Chattopadhaya, S., Harikishore, A., Yoon, H.S., Role of FK506 binding proteins in neurodegenerative disorders (2011) Curr. Med. Chem, 18 (35), pp. 5380-5397 
504 |a Koren III, J., Jinwal, U.K., Davey, Z., Kiray, J., Arulselvam, K., Dickey, C.A., Bending tau into shape: The emerging role of peptidyl-prolyl isomerases in tauopathies (2011) Mol. Neurobiol, 44 (1), pp. 65-70 
504 |a Sanchez, E.R., Hsp56: A novel heat shock protein associated with untransformed steroid receptor complexes (1990) J. Biol. Chem, 265 (36), pp. 22067-22070 
504 |a Smith, D.F., Faber, L.E., Toft, D.O., Purification of unactivated progesterone receptor and identification of novel receptorassociated proteins (1990) J. Biol. Chem, 265 (7), pp. 3996-4003 
504 |a Storer, C.L., Dickey, C.A., Galigniana, M.D., Rein, T., Cox, M.B., FKBP51 and FKBP52 in signaling and disease (2011) Trends Endocrinol. Metab, 22 (12), pp. 481-490 
504 |a Davies, T.H., Ning, Y.M., Sanchez, E.R., Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506 (2005) Biochemistry, 44 (6), pp. 2030-2038 
504 |a Riggs, D.L., Cox, M.B., Tardif, H.L., Hessling, M., Buchner, J., Smith, D.F., Noncatalytic role of the FKBP52 peptidyl-prolyl isomerase domain in the regulation of steroid hormone signaling (2007) Mol. Cell Biol, 27 (24), pp. 8658-8669 
504 |a Riggs, D.L., Roberts, P.J., Chirillo, S.C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., Gaber, R., Smith, D.F., The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo (2003) EMBO J, 22 (5), pp. 1158-1167 
504 |a Galigniana, M.D., Echeverria, P.C., Erlejman, A.G., Piwien-pilipuk, G., Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore (2010) Nucleus, 1 (4), pp. 299-308 
504 |a Sivils, J.C., Storer, C.L., Galigniana, M.D., Cox, M.B., Regulation of steroid hormone receptor function by the 52-kDa FK506-binding protein (FKBP52) (2011) Curr. Opin. Pharmacol, 11 (4), pp. 314-319 
504 |a Galigniana, M.D., Steroid receptor coupling becomes nuclear (2012) Chem. Biol, 19 (6), pp. 662-663 
504 |a Cheung-Flynn, J., Prapapanich, V., Cox, M.B., Riggs, D.L., Suarez-Quian, C., Smith, D.F., Physiological role for the cochaperone FKBP52 in androgen receptor signaling (2005) Mol. Endocrinol, 19 (6), pp. 1654-1666 
504 |a Yong, W., Yang, Z., Periyasamy, S., Chen, H., Yucel, S., Li, W., Lin, L.Y., Shou, W., Essential role for Co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology (2007) J. Biol. Chem, 282 (7), pp. 5026-5036 
504 |a Tranguch, S., Cheung-Flynn, J., Daikoku, T., Prapapanich, V., Cox, M.B., Xie, H., Wang, H., Dey, S.K., Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation (2005) Proc. Natl. Acad. Sci. U. S. A, 102 (40), pp. 14326-14331 
504 |a Hartmann, J., Wagner, K.V., Dedic, N., Marinescu, D., Scharf, S.H., Wang, X.D., Deussing, J.M., Schmidt, M.V., Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice (2012) Psychoneuroendocrinology, 37 (12), pp. 2009-2021 
504 |a Warrier, M., Hinds Jr., T.D., Ledford, K.J., Cash, H.A., Patel, P.R., Bowman, T.A., Stechschulte, L.A., Sanchez, E.R., Susceptibility to diet-induced hepatic steatosis and glucocorticoid resistance in FK506-binding protein 52-deficient mice (2010) Endocrinology, 151 (7), pp. 3225-3236 
504 |a Hartmann, J., Wagner, K.V., Liebl, C., Scharf, S.H., Wang, X.D., Wolf, M., Hausch, F., Schmidt, M.V., The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress (2012) Neuropharmacology, 62 (1), pp. 332-339 
504 |a O'leary III, J.C., Dharia, S., Blair, L.J., Brady, S., Johnson, A.G., Peters, M., Cheung-Flynn, J., Dickey, C.A., A new anti-depressive strategy for the elderly: Ablation of FKBP5/FKBP51 (2011) PLoS One, 6 (9), pp. e24840 
504 |a Touma, C., Gassen, N.C., Herrmann, L., Cheung-Flynn, J., Bull, D.R., Ionescu, I.A., Heinzmann, J.M., Rein, T., FK506 binding protein 5 shapes stress responsiveness: Modulation of neuroendocrine reactivity and coping behavior (2011) Biol. Psychiatry, 70 (10), pp. 928-936 
504 |a Sinars, C.R., Cheung-Flynn, J., Rimerman, R.A., Scammell, J.G., Smith, D.F., Clardy, J., Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes (2003) Proc. Natl. Acad. Sci. U. S. A, 100 (3), pp. 868-873 
504 |a Wu, B., Li, P., Liu, Y., Lou, Z., Ding, Y., Shu, C., Ye, S., Rao, Z., 3D structure of human FK506-binding protein 52: Implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex (2004) Proc. Natl. Acad. Sci. U. S. A, 101 (22), pp. 8348-8353 
504 |a Wu, B., Li, P., Shu, C., Shen, B., Rao, Z., Crystallization and preliminary crystallographic studies of the C-terminal domain of human FKBP52 (2003) Acta Crystallogr. D Biol. Crystallogr, 59 (Pt 12), pp. 2269-2271 
504 |a Chadli, A., Bruinsma, E.S., Stensgard, B., Toft, D., Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition (2008) Biochemistry, 47 (9), pp. 2850-2857 
504 |a Li, J., Richter, K., Buchner, J., Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle (2011) Nat. Struct. Mol. Biol, 18 (1), pp. 61-66 
504 |a Riggs, D.L., Cox, M.B., Cheung-Flynn, J., Prapapanich, V., Carrigan, P.E., Smith, D.F., Functional specificity of co-chaperone interactions with Hsp90 client proteins (2004) Crit. Rev. Biochem. Mol. Biol, 39, pp. 279-295 
504 |a Cheung-Flynn, J., Roberts, P.J., Riggs, D.L., Smith, D.F., Cterminal sequences outside the tetratricopeptide repeat domain of FKBP51 and FKBP52 cause differential binding to Hsp90 (2003) J. Biol. Chem, 278 (19), pp. 17388-17394 
504 |a Pirkl, F., Buchner, J., Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40 (2001) J. Mol. Biol, 308 (4), pp. 795-806 
504 |a Miyata, Y., Chambraud, B., Radanyi, C., Leclerc, J., Lebeau, M.C., Renoir, J.M., Shirai, R., Baulieu, E.E., Phosphorylation of the immunosuppressant FK506-binding protein FKBP52 by casein kinase II: Regulation of HSP90-binding activity of FKBP52 (1997) Proc. Natl. Acad. Sci. U. S. A, 94 (26), pp. 14500-14505 
504 |a Cox, M.B., Riggs, D.L., Hessling, M., Schumacher, F., Buchner, J., Smith, D.F., FK506-binding protein 52 phosphorylation: A potential mechanism for regulating steroid hormone receptor activity (2007) Mol. Endocrinol, 21 (12), pp. 2956-2967 
504 |a Huse, M., Chen, Y.G., Massague, J., Kuriyan, J., Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12 (1999) Cell, 96 (3), pp. 425-436 
504 |a Estebanez-Perpina, E., Arnold, L.A., Nguyen, P., Rodrigues, E.D., Mar, E., Bateman, R., Pallai, P., Fletterick, R.J., A surface on the androgen receptor that allosterically regulates coactivator binding (2007) Proc. Natl. Acad. Sci. U. S. A, 104 (41), pp. 16074-16079 
504 |a de Leon, J.T., Iwai, A., Feau, C., Garcia, Y., Balsiger, H.A., Storer, C.L., Suro, R.M., Cox, M.B., Targeting the regulation of androgen receptor signaling by the heat shock protein 90 cochaperone FKBP52 in prostate cancer cells (2011) Proc. Natl. Acad. Sci. U. S. A, 108 (29), pp. 11878-11883 
504 |a Perrot-Applanat, M., Cibert, C., Geraud, G., Renoir, J.M., Baulieu, E.E., The 59 kDa FK506-binding protein, a 90 kDa heat shock protein binding immunophilin (FKBP59-HBI), is associated with the nucleus, the cytoskeleton and mitotic apparatus (1995) J. Cell Sci, 108 (5), pp. 2037-2051 
504 |a Czar, M.J., Lyons, R.H., Welsh, M.J., Renoir, J.M., Pratt, W.B., Evidence that the FK506-binding immunophilin heat shock protein 56 is required for trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus (1995) Mol Endocrinol, 9 (11), pp. 1549-1560 
504 |a Galigniana, M.D., Radanyi, C., Renoir, J.M., Housley, P.R., Pratt, W.B., Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus (2001) J. Biol. Chem, 276 (18), pp. 14884-14889 
504 |a Silverstein, A.M., Galigniana, M.D., Kanelakis, K.C., Radanyi, C., Renoir, J.M., Pratt, W.B., Different regions of the immunophilin FKBP52 determine its association with the glucocorticoid receptor, hsp90, and cytoplasmic dynein (1999) J. Biol. Chem, 274 (52), pp. 36980-36986 
504 |a Chambraud, B., Belabes, H., Fontaine-Lenoir, V., Fellous, A., Baulieu, E.E., The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation (2007) FASEB J, 21 (11), pp. 2787-2797 
504 |a Elbi, C., Walker, D.A., Lewis, M., Romero, G., Sullivan, W.P., Toft, D.O., Hager, G.L., Defranco, D.B., A novel in situ assay for the identification and characterization of soluble nuclear mobility factors (2004) Sci. STKE, 2004 (238), pp. l10 
504 |a Chambraud, B., Sardin, E., Giustiniani, J., Dounane, O., Schumacher, M., Goedert, M., Baulieu, E.E., A role for FKBP52 in Tau protein function (2010) Proc. Natl. Acad. Sci. U. S. A, 107 (6), pp. 2658-2663 
504 |a Jinwal, U.K., Koren 3rd, J., Borysov, S.I., Schmid, A.B., Abisambra, J.F., Blair, L.J., Johnson, A.G., Dickey, C.A., The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules (2010) J. Neurosci, 30 (2), pp. 591-599 
504 |a Galigniana, M.D., Erlejman, A.G., Monte, M., Gomez-Sanchez, C., Piwien-Pilipuk, G., The hsp90-FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events (2010) Mol. Cell Biol, 30 (5), pp. 1285-1298 
504 |a Gross, K.L., Westberry, J.M., Hubler, T.R., Sadosky, P.W., Singh, R.J., Taylor, R.L., Scammell, J.G., Androgen resistance in squirrel monkeys (Saimiri spp.) (2008) Comp. Med, 58 (4), pp. 381-388 
504 |a Banerjee, A., Periyasamy, S., Wolf, I.M., Hinds Jr., T.D., Yong, W., Shou, W., Sanchez, E.R., Control of glucocorticoid and progesterone receptor subcellular localization by the ligand-binding domain is mediated by distinct interactions with tetratricopeptide repeat proteins (2008) Biochemistry, 47 (39), pp. 10471-10480 
504 |a Quintá, H.R., Maschi, D., Gomez-Sanchez, C., Piwien, P.G., Galigniana, M.D., Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth (2010) J. Neurochem, 115, pp. 716-734 
504 |a Quinta, H.R., Galigniana, M.D., The neuroregenerative mechanism mediated by the Hsp90-binding immunophilin FKBP52 resembles the early steps of neuronal differentiation (2012) Br. J. Pharmacol, 166 (2), pp. 637-649 
504 |a Gold, B.G., Villafranca, J.E., Neuroimmunophilin ligands: The development of novel neuroregenerative/ neuroprotective compounds (2003) Curr. Top. Med. Chem, 3 (12), pp. 1368-1375 
504 |a Gold, B.G., Densmore, V., Shou, W., Matzuk, M.M., Gordon, H.S., Immunophilin FK506-binding protein 52 (not FK506-binding protein 12) mediates the neurotrophic action of FK506 (1999) J. Pharmacol. Exp. Ther, 289 (3), pp. 1202-1210 
504 |a Wright, N.T., Cannon, B.R., Zimmer, D.B., Weber, D.J., S100A1: Structure, Function, and Therapeutic Potential (2009) Curr. Chem. Biol, 3 (2), pp. 138-145 
504 |a Shimamoto, S., Kubota, Y., Tokumitsu, H., Kobayashi, R., S100 proteins regulate the interaction of Hsp90 with Cyclophilin 40 and FKBP52 through their tetratricopeptide repeats (2010) FEBS Lett, 584 (6), pp. 1119-1125 
504 |a Shim, S., Yuan, J.P., Kim, J.Y., Zeng, W., Huang, G., Milshteyn, A., Kern, D., Worley, P.F., Peptidylprolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening (2009) Neuron, 64 (4), pp. 471-483 
504 |a Bai, X., Ma, D., Liu, A., Shen, X., Wang, Q.J., Liu, Y., Jiang, Y., Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38 (2007) Science, 318 (5852), pp. 977-980 
504 |a Sivendran, S., Agarwal, N., Gartrell, B., Ying, J., Boucher, K.M., Choueiri, T.K., Sonpavde, G., Galsky, M.D., Metabolic complications with the use of mTOR inhibitors for cancer therapy (2014) Cancer Treat Rev, 40 (1), pp. 190-196 
504 |a Shirane, M., Nakayama, K.I., Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis (2003) Nat. Cell Biol, 5 (1), pp. 28-37 
504 |a Edlich, F., Weiwad, M., Erdmann, F., Fanghanel, J., Jarczowski, F., Rahfeld, J.U., Fischer, G., Bcl-2 regulator FKBP38 is activated by Ca2+/calmodulin (2005) EMBO J, 24 (14), pp. 2688-2699 
504 |a Coss, M.C., Stephens, R.M., Morrison, D.K., Winterstein, D., Smith, L.M., Simek, S.L., The immunophilin FKBP65 forms an association with the serine/threonine kinase c-Raf-1 (1998) Cell Growth Differ, 9 (1), pp. 41-48 
504 |a Henriksen, R., Sorensen, F.B., Orntoft, T.F., Birkenkamp-Demtroder, K., Expression of FK506 binding protein 65 (FKBP65) is decreased in epithelial ovarian cancer cells compared to benign tumor cells and to ovarian epithelium (2011) Tumour Biol, 32 (4), pp. 671-676 
504 |a Olesen, S.H., Christensen, L.L., Sorensen, F.B., Cabezon, T., Laurberg, S., Orntoft, T.F., Birkenkamp-Demtroder, K., Human FK506 binding protein 65 is associated with colorectal cancer (2005) Mol. Cell Proteomics, 4 (4), pp. 534-544 
504 |a Liu, Y., Li, C., Xing, Z., Yuan, X., Wu, Y., Xu, M., Tu, K., Zeng, R., Proteomic mining in the dysplastic liver of WHV/c-myc mice--insights and indicators for early hepatocarcinogenesis (2010) FEBS J, 277 (19), pp. 4039-4053 
504 |a Krummrei, U., Baulieu, E.E., Chambraud, B., The FKBP-associated protein FAP48 is an antiproliferative molecule and a player in T cell activation that increases IL2 synthesis (2003) Proc. Natl. Acad. Sci. U. S. A, 100 (5), pp. 2444-2449 
504 |a Solassol, J., Mange, A., Maudelonde, T., FKBP family proteins as promising new biomarkers for cancer (2011) Curr. Opin. Pharmacol, 11 (4), pp. 320-325 
504 |a Kumar, P., Mark, P.J., Ward, B.K., Minchin, R.F., Ratajczak, T., Estradiol-regulated expression of the immunophilins cyclophilin 40 and FKBP52 in MCF-7 breast cancer cells (2001) Biochem. Biophys. Res. Commun, 284 (1), pp. 219-225 
504 |a Gougelet, A., Bouclier, C., Marsaud, V., Maillard, S., Mueller, S.O., Korach, K.S., Renoir, J.M., Estrogen receptor alpha and beta subtype expression and transactivation capacity are differentially affected by receptor-, hsp90- and immunophilin-ligands in human breast cancer cells (2005) J. Steroid Biochem. Mol. Biol, 94 (1-3), pp. 71-81 
504 |a Desmetz, C., Bascoul-Mollevi, C., Rochaix, P., Lamy, P.J., Kramar, A., Rouanet, P., Maudelonde, T., Solassol, J., Identification of a new panel of serum autoantibodies associated with the presence of in situ carcinoma of the breast in younger women (2009) Clin. Cancer Res, 15 (14), pp. 4733-4741 
504 |a Yang, W.S., Moon, H.G., Kim, H.S., Choi, E.J., Yu, M.H., Noh, D.Y., Lee, C., Proteomic approach reveals FKBP4 and S100A9 as potential prediction markers of therapeutic response to neoadjuvant chemotherapy in patients with breast cancer (2012) J. Proteome Res, 11 (2), pp. 1078-1088 
504 |a Shipp, C., Watson, K., Jones, G.L., Associations of HSP90 client proteins in human breast cancer (2011) Anticancer Res, 31 (6), pp. 2095-2101 
504 |a Periyasamy, S., Hinds Jr., T., Shemshedini, L., Shou, W., Sanchez, E.R., FKBP51 and Cyp40 are positive regulators of androgendependent prostate cancer cell growth and the targets of FK506 and cyclosporin A (2010) Oncogene, 29 (11), pp. 1691-1701 
504 |a Lin, J.F., Xu, J., Tian, H.Y., Gao, X., Chen, Q.X., Gu, Q., Xu, G.J., Zhao, F.K., Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis (2007) Int. J. Cancer, 121 (12), pp. 2596-2605 
504 |a Romano, S., Di Pace, A., Sorrentino, A., Bisogni, R., Sivero, L., Romano, M.F., FK506 binding proteins as targets in anticancer therapy (2010) Anticancer Agents Med. Chem, 10 (9), pp. 651-656 
504 |a Ni, L., Yang, C.S., Gioeli, D., Frierson, H., Toft, D.O., Paschal, B.M., FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells (2010) Mol. Cell Biol, 30 (5), pp. 1243-1253 
504 |a Gallo, L.I., Lagadari, M., Piwien-Pilipuk, G., Galigniana, M.D., The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress (2011) J. Biol. Chem, 286 (34), pp. 30152-30160 
504 |a Giraudier, S., Chagraoui, H., Komura, E., Barnache, S., Blanchet, B., Lecouedic, J.P., Smith, D.F., Vainchenker, W., Overexpression of FKBP51 in idiopathic myelofibrosis regulates the growth factor independence of megakaryocyte progenitors (2002) Blood, 100 (8), pp. 2932-2940 
504 |a Romano, S., Sorrentino, A., Di Pace, A.L., Nappo, G., Mercogliano, C., Romano, M.F., The emerging role of large immunophilin FK506 binding protein 51 in cancer (2011) Curr. Med. Chem, 18 (35), pp. 5424-5429 
504 |a Erlejman, A.G., Lagadari, M., Galigniana, M.D., Hsp90-binding immunophilins as a potential new platform for drug treatment (2013) Future Med. Chem, 5 (5), pp. 591-607 
504 |a Galigniana, N.M., Ballmer, L.T., Toneatto, J., Erlejman, A.G., Lagadari, M., Galigniana, M.D., Regulation of the glucocorticoid response to stress-related disorders by the Hsp90-binding immunophilin FKBP51 (2012) J. Neurochem, 122 (1), pp. 4-18 
520 3 |a Immunophilins comprise a family of intracellular proteins with peptidyl-prolyl-(cis/trans)-isomerase activity. These foldases are abundant, ubiquitous, and able to bind immunosuppressant drugs, from which the term immunophilin derives. Family members are found in abundance in virtually all organisms and subcellular compartments, and their amino acid sequences are conserved phylogenetically. Immunophilins possess the ability to function as molecular chaperones favoring the proper folding and biological regulation of their biological actions. Their ability to interact via their TPR domains with the 90-kDa heat-shock protein, and through this chaperone, with several signalling cascade factors is of particular importance. Among the family members, the highly homologous proteins FKBP51 and FKBP52 were first characterized due to their ability to interact with steroid hormone receptors. Since then, much progress has been made in understanding the mechanisms by which they regulate receptor signaling and the resulting roles they play not only in endocrine processes, but also in cell architecture, neurodifferentiation, and tumor progression. In this article we review the most relevant features of these two immunophilins and their potential as pharmacologic targets. © 2014 Bentham Science Publishers.  |l eng 
536 |a Detalles de la financiación: National Center for Research Resources, NCRR, 5G12RR008124 
536 |a Detalles de la financiación: National Institute of General Medical Sciences, NIGMS, RP110444-P2 
593 |a Departamento de Química Biológica/IQUIBICEN, Universidad de Buenos Aires, Argentina 
593 |a Instituto de Biología Medicina Experimental/CONICET, Buenos Aires, Argentina 
593 |a The Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States 
690 1 0 |a FK506 
690 1 0 |a FKBP51 
690 1 0 |a FKBP52 
690 1 0 |a HSP70 
690 1 0 |a HSP90 
690 1 0 |a IMMUNOPHILIN 
690 1 0 |a PEPTIDYLPROLYL ISOMERASE 
690 1 0 |a TPR 
690 1 0 |a CHAPERONE 
690 1 0 |a CYCLOSPORIN A 
690 1 0 |a FK 506 BINDING PROTEIN 
690 1 0 |a HEAT SHOCK PROTEIN 90 
690 1 0 |a IMMUNOPHILIN 
690 1 0 |a PEPTIDYLPROLYL ISOMERASE 
690 1 0 |a PROLINE RICH PROTEIN 
690 1 0 |a PROTEIN FKB52 
690 1 0 |a PROTEIN FKBP51 
690 1 0 |a PROTEIN S 100 
690 1 0 |a RAPAMYCIN 
690 1 0 |a TACROLIMUS 
690 1 0 |a TAU PROTEIN 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a CHAPERONE 
690 1 0 |a FK 506 BINDING PROTEIN 
690 1 0 |a STEROID RECEPTOR 
690 1 0 |a TACROLIMUS BINDING PROTEIN 4 
690 1 0 |a TACROLIMUS BINDING PROTEIN 5 
690 1 0 |a ALZHEIMER DISEASE 
690 1 0 |a ARTICLE 
690 1 0 |a BREAST CANCER 
690 1 0 |a CELL GROWTH 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a COMPLEX FORMATION 
690 1 0 |a CYTOSKELETON 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a GENE OVEREXPRESSION 
690 1 0 |a HUMAN 
690 1 0 |a NERVE CELL DIFFERENTIATION 
690 1 0 |a NONHUMAN 
690 1 0 |a OVARY CANCER 
690 1 0 |a PROTEIN ASSEMBLY 
690 1 0 |a PROTEIN BINDING 
690 1 0 |a PROTEIN DOMAIN 
690 1 0 |a PROTEIN EXPRESSION 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a PROTEIN INTERACTION 
690 1 0 |a PROTEIN LOCALIZATION 
690 1 0 |a PROTEIN PHOSPHORYLATION 
690 1 0 |a TETRATRICOPEPTIDE REPEAT 
690 1 0 |a CHEMISTRY 
690 1 0 |a METABOLISM 
690 1 0 |a PROTEIN FOLDING 
690 1 0 |a PROTEIN TERTIARY STRUCTURE 
690 1 0 |a HUMANS 
690 1 0 |a MOLECULAR CHAPERONES 
690 1 0 |a PROTEIN FOLDING 
690 1 0 |a PROTEIN STRUCTURE, TERTIARY 
690 1 0 |a RECEPTORS, STEROID 
690 1 0 |a TACROLIMUS BINDING PROTEINS 
700 1 |a Lagadari, M. 
700 1 |a Harris, D.C. 
700 1 |a Cox, M.B. 
700 1 |a Galigniana, M.D. 
773 0 |d Bentham Science Publishers B.V., 2014  |g v. 15  |h pp. 205-215  |k n. 3  |p Curr. Protein Pept. Sci.  |x 13892037  |t Current Protein and Peptide Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84904465108&partnerID=40&md5=d3b6e0b16b92b0cce45c942dba4ccac2  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13892037_v15_n3_p205_Erlejman  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13892037_v15_n3_p205_Erlejman  |y Registro en la Biblioteca Digital 
961 |a paper_13892037_v15_n3_p205_Erlejman  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 85018