On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions

We prove that the set of exceptional λ∈ (1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Shmerkin, P.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Birkhauser Verlag AG 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07636caa a22007097a 4500
001 PAPER-23982
003 AR-BaUEN
005 20230518205545.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84901981583 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Shmerkin, P. 
245 1 3 |a On the Exceptional Set for Absolute Continuity of Bernoulli Convolutions 
260 |b Birkhauser Verlag AG  |c 2014 
270 1 0 |m Shmerkin, P.; Department of Mathematics and Statistics, Torcuato Di Tella University, Av. Figueroa Alcorta 7350, 1428 Buenos Aires, Argentina; email: pshmerkin@utdt.edu 
506 |2 openaire  |e Política editorial 
504 |a Bufetov, A., Solomyak, B., On the modulus of continuity for spectral measures in substitution dynamics (2013) Advances in Mathematics, , http://arxiv.org/abs/1305.7373, (accepted). Available at 
504 |a Dai, X.-R., does a Bernoulli convolution admit a spectrum? (2012) Advances in Mathematics, 231 (3-4), pp. 1681-1693 
504 |a Dai, X.-R., Feng, D.-J., Wang, Y., Refinable functions with non-integer dilations (2007) Journal of Functional Analysis, 250 (1), pp. 1-20 
504 |a Moreira, C.T.G.A., Yoccoz, J.-C., Stable intersections of regular Cantor sets with large Hausdorff dimensions (2001) Annals of Mathematics (2), 154 (1), pp. 45-96 
504 |a Edgar, G.A., (1998) Integral, Probability, and Fractal Measures, , New York: Springer-Verlag 
504 |a Erdös, P., On a family of symmetric Bernoulli convolutions (1939) American Journal of Mathematics, 61, pp. 974-976 
504 |a Erdös, P., On the smoothness properties of a family of Bernoulli convolutions (1940) American Journal of Mathematics, 62, pp. 180-186 
504 |a Falconer, K., (1997) Techniques in Fractal Geometry, , Chichester: John Wiley & Sons Ltd 
504 |a Falconer, K., (2003) Fractal Geometry, , John Wiley & Sons Inc., Hoboken, second edition, Mathematical foundations and applications 
504 |a Hochman, M., (2013) On self-similar sets with overlaps and inverse theorems for entropy, , http://arxiv.org/abs/1212.1873, Preprint, Available at 
504 |a Hochman, M., Shmerkin, P., Local entropy averages and projections of fractal measures (2012) Annals of Mathematics (2), 175 (3), pp. 1001-1059 
504 |a Hochman, M., Shmerkin, P., (2013) Equidistribution from fractals, , http://arxiv.org/abs/1302.5792, Preprint, Available at 
504 |a Kahane, J.-P., Sur la distribution de certaines séries aléatoires (1971) Colloque de Théorie des Nombres, pp. 119-122. , (Univ. Bordeaux, Bordeaux, 1969), Bull. Soc. Math. France, Mém. No. 25, Soc. Math., France 
504 |a Lindenstrauss, E., Peres, Y., Schlag, W., Bernoulli convolutions and an intermediate value theorem for entropies of K-partitions (2002) Journal d'Analyse Mathématique, 87, pp. 337-367. , Dedicated to the memory of Thomas H. Wolff 
504 |a Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Vol. 44 of Cambridge Studies in Advanced Mathematics (1995) Fractals and Rectifiability, , Cambridge University Press, Cambridge 
504 |a Mauldin, R.D., Simon, K., The equivalence of some Bernoulli convolutions to Lebesgue measure (1998) Proceedings of the American Mathematical Society, 126 (9), pp. 2733-2736 
504 |a Nazarov, F., Peres, Y., Shmerkin, P., Convolutions of Cantor measures without resonance (2012) Israel Journal of Mathematics, 187, pp. 93-116 
504 |a Palis, J., Homoclinic orbits, hyperbolic dynamics and dimension of Cantor sets (1987) The Lefschetz Centennial Conference, Part III (Mexico City, 1984), Vol. 58 of Contemp. Math., pp. 203-216. , American Mathematical Society, Providence 
504 |a Peres, Y., Schlag, W., Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions (2000) Duke Mathematical Journal, 102 (2), pp. 93-251 
504 |a Peres, Y., Schlag, W., Solomyak, B., 60 years of Bernoulli convolutions (2000) Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), Vol. 46 of Progr., pp. 39-65. , Probab., Birkhäuser, Basel 
504 |a Peres, Y., Shmerkin, P., Resonance between Cantor sets (2009) Ergodic Theory and Dynamical Systems, 29 (1), pp. 201-221 
504 |a Peres, Y., Solomyak, B., Absolute continuity of Bernoulli convolutions, a simple proof (1996) Mathematical Research Letters, 3 (2), pp. 231-239 
504 |a Peres, Y., Solomyak, B., Self-similar measures and intersections of Cantor sets (1998) Transactions of the American Mathematical Society, 350 (10), pp. 4065-4087 
504 |a Shmerkin, P., Solomyak, B., (2014) On the absolute continuity of self-similar measures, their projections, and convolutions, , Work in progress 
504 |a Solomyak, B., On the random series ∑±λn (an Erdo{double acute}s problem) (1995) Annals of Mathematics (2), 142 (3), pp. 611-625 
504 |a Solomyak, B., Notes on Bernoulli convolutions (2004) Fractal Geometry and Applications: A Jubilee of Benoî t Mandelbrot. Part 1, Vol. 72 of Proc. Sympos. Pure Math., pp. 207-230. , American Mathematical Society, Providence 
504 |a Tóth, H.R., Infinite Bernoulli convolutions with different probabilities (2008) Discrete and Continuous Dynamical Systems. Series A, 21 (2), pp. 595-600 
504 |a Watanabe, T., Asymptotic properties of Fourier transforms of b-decomposable distributions (2012) The Journal of Fourier Analysis and Applications, 18 (4), pp. 803-827 
520 3 |a We prove that the set of exceptional λ∈ (1/2,1) such that the associated Bernoulli convolution is singular has zero Hausdorff dimension, and likewise for biased Bernoulli convolutions, with the exceptional set independent of the bias. This improves previous results by Erdös, Kahane, Solomyak, Peres and Schlag, and Hochman. A theorem of this kind is also obtained for convolutions of homogeneous self-similar measures. The proofs are very short, and rely on old and new results on the dimensions of self-similar measures and their convolutions, and the decay of their Fourier transform. © 2014 Springer Basel.  |l eng 
536 |a Detalles de la financiación: Leverhulme Trust 
536 |a Detalles de la financiación: Keywords and phrases: Bernoulli convolutions, self-similar measures, hausdorff dimension Mathematics Subject Classification (1991): Primary 28A78, 28A80; Secondary 37A45 The author was supported by a Leverhulme Early Career Fellowship. 
593 |a Department of Mathematics and Statistics, Torcuato Di Tella University, Av. Figueroa Alcorta 7350, 1428 Buenos Aires, Argentina 
690 1 0 |a 28A80 
690 1 0 |a BERNOULLI CONVOLUTIONS 
690 1 0 |a HAUSDORFF DIMENSION 
690 1 0 |a PRIMARY 28A78 
690 1 0 |a SECONDARY 37A45 
690 1 0 |a SELF-SIMILAR MEASURES 
773 0 |d Birkhauser Verlag AG, 2014  |g v. 24  |h pp. 946-958  |k n. 3  |p Geom. Funct. Anal.  |x 1016443X  |t Geometric and Functional Analysis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84901981583&doi=10.1007%2fs00039-014-0285-4&partnerID=40&md5=bb2160f9325670317c40e86c4741012b  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00039-014-0285-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_1016443X_v24_n3_p946_Shmerkin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1016443X_v24_n3_p946_Shmerkin  |y Registro en la Biblioteca Digital 
961 |a paper_1016443X_v24_n3_p946_Shmerkin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84935