A Bayesian approach for a SAC-D/aquarius soil moisture product
In this work, several retrieval algorithms were implemented to retrieve soil moisture (sm) and optical depth (τ) from Aquarius/SAC-D observations. Currently used sm retrieval algorithms (H- and V-pol Single Channel Algorithm, SCAH and SCAV; Microwave Polarization Difference Algorithm, MPDA) were com...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Acta de conferencia Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
IEEE Computer Society
2014
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 05016caa a22006377a 4500 | ||
|---|---|---|---|
| 001 | PAPER-23970 | ||
| 003 | AR-BaUEN | ||
| 005 | 20250428091427.0 | ||
| 008 | 190411s2014 xx ||||fo|||| 10| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84906739181 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Bruscantini, C.A. | |
| 245 | 1 | 2 | |a A Bayesian approach for a SAC-D/aquarius soil moisture product |
| 260 | |b IEEE Computer Society |c 2014 | ||
| 270 | 1 | 0 | |m Bruscantini, C.A.; Institute of Astronomy and Space Physics (IAFE)Argentina; email: cintiab@iafe.uba.ar |
| 504 | |a Vine, D.M.L., Lagerloef, G.S.E., Yueh, S., Pellerano, F.A., Dinnat, E.P., Wentz, F., Aquarius mission technical overview (2006) IGARSS, pp. 1678-1680. , IEEE | ||
| 504 | |a Jackson, T.J., Cosh, M.H., Bindlish, R., Starks, P.J., Bosch, D.D., Seyfried, M., Goodrich, D.C., Du, J., Validation of advanced microwave scanning radiometer soil moisture products (2010) Geoscience and Remote Sensing, IEEE Transactions on, 48 (12), pp. 4256-4272. , Dec | ||
| 504 | |a Jackson, T.J., Schmugge, T.J., Vegetation effects on the microwave emission of soils (1991) Remote Sensing of Environment, 36 (3), pp. 203-212 | ||
| 504 | |a De Jeu, R.A.M., Holmes, T.R.H., Panciera, R., Walker, J.P., Parameterization of the land parameter retrieval model for l-band observations using the nafe'05 data set (2009) Geoscience and Remote Sensing Letters, IEEE, 6 (4), pp. 630-634. , Oct | ||
| 504 | |a Oneill, P., Chan, S., Njoku, E., Jackson, T., Bindlish, R., Algorithm theoretical basis document (ATBD) SMAP Level 2 & 3 soil moisture (Passive) (2012) Initial Release, 1 | ||
| 504 | |a Bindlish, R., Jackson, T., (2013) Aquarius level-2 Swath Single Orbit Soil Moisture. Version 2, , Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center | ||
| 504 | |a Centro de Informaci´on Agroclimática (CIAg), , http://www.agro.uba.ar/centros/ciag, Argentina Facultad de Agronomía, Universidad de Buenos AiresA4 - IEEE Geoscience and Remote Sensing Society (IEEE GRSS); The Institute of Electrical and Electronics Engineers | ||
| 506 | |2 openaire |e Política editorial | ||
| 520 | 3 | |a In this work, several retrieval algorithms were implemented to retrieve soil moisture (sm) and optical depth (τ) from Aquarius/SAC-D observations. Currently used sm retrieval algorithms (H- and V-pol Single Channel Algorithm, SCAH and SCAV; Microwave Polarization Difference Algorithm, MPDA) were computed over Pampas Plains, Argentina. The methodology of a novel Bayesian algorithm developed is also presented, and its results are contrasted with the previous algorithms. Finally, performance metrics for each algorithms were derived using SMOS Level-2 sm and τ as benchmark products. The new Bayesian approach provide the sm retrieval algorithm that exhibited the lowest ubRMSE (0.115m 3/m3), though very close to USDA SCA and SCAV ubRMSE (0.116m3/m3). Nevertheless, some improvements are discussed in Section 4 that might increase significantly the Bayesian algorithm performance. © 2014 IEEE. |l eng | |
| 593 | |a Institute of Astronomy and Space Physics (IAFE), Argentina | ||
| 690 | 1 | 0 | |a AQUARIUS |
| 690 | 1 | 0 | |a BAYESIAN INFERENCE |
| 690 | 1 | 0 | |a MARKOV CHAIN MONTE CARLO |
| 690 | 1 | 0 | |a SOIL MOISTURE |
| 690 | 1 | 0 | |a BAYESIAN NETWORKS |
| 690 | 1 | 0 | |a INFERENCE ENGINES |
| 690 | 1 | 0 | |a MICROWAVES |
| 690 | 1 | 0 | |a REMOTE SENSING |
| 690 | 1 | 0 | |a SOIL MOISTURE |
| 690 | 1 | 0 | |a AQUARIUS |
| 690 | 1 | 0 | |a BAYESIAN ALGORITHMS |
| 690 | 1 | 0 | |a BAYESIAN APPROACHES |
| 690 | 1 | 0 | |a BAYESIAN INFERENCE |
| 690 | 1 | 0 | |a MARKOV CHAIN MONTE-CARLO |
| 690 | 1 | 0 | |a MICROWAVE POLARIZATIONS |
| 690 | 1 | 0 | |a RETRIEVAL ALGORITHMS |
| 690 | 1 | 0 | |a SINGLE-CHANNEL ALGORITHMS |
| 690 | 1 | 0 | |a ALGORITHMS |
| 700 | 1 | |a Grings, Francisco Matías | |
| 700 | 1 | |a Barber, M. | |
| 700 | 1 | |a Perna, P. | |
| 700 | 1 | |a Karszenbaum, H. | |
| 711 | 2 | |c Pasadena, CA |d 24 March 2014 through 27 March 2014 |g Código de la conferencia: 107223 | |
| 773 | 0 | |d IEEE Computer Society, 2014 |h pp. 1-4 |p Spec. Meet. Microw. Radiom. Rem. Sens. Environ., MicroRad - Proc. |n 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, MicroRad 2014 - Proceedings |z 9781479946440 |t 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, MicroRad 2014 | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906739181&doi=10.1109%2fMicroRad.2014.6878896&partnerID=40&md5=15632432529c996cd01952db42a7e3a7 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1109/MicroRad.2014.6878896 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_97814799_v_n_p1_Bruscantini |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814799_v_n_p1_Bruscantini |y Registro en la Biblioteca Digital |
| 961 | |a paper_97814799_v_n_p1_Bruscantini |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/conferenceObject |a info:ar-repo/semantics/documento de conferencia |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 84923 | ||