A Bayesian approach for a SAC-D/aquarius soil moisture product

In this work, several retrieval algorithms were implemented to retrieve soil moisture (sm) and optical depth (τ) from Aquarius/SAC-D observations. Currently used sm retrieval algorithms (H- and V-pol Single Channel Algorithm, SCAH and SCAV; Microwave Polarization Difference Algorithm, MPDA) were com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bruscantini, C.A
Otros Autores: Grings, Francisco Matías, Barber, M., Perna, P., Karszenbaum, H.
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: IEEE Computer Society 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05016caa a22006377a 4500
001 PAPER-23970
003 AR-BaUEN
005 20250428091427.0
008 190411s2014 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84906739181 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bruscantini, C.A. 
245 1 2 |a A Bayesian approach for a SAC-D/aquarius soil moisture product 
260 |b IEEE Computer Society  |c 2014 
270 1 0 |m Bruscantini, C.A.; Institute of Astronomy and Space Physics (IAFE)Argentina; email: cintiab@iafe.uba.ar 
504 |a Vine, D.M.L., Lagerloef, G.S.E., Yueh, S., Pellerano, F.A., Dinnat, E.P., Wentz, F., Aquarius mission technical overview (2006) IGARSS, pp. 1678-1680. , IEEE 
504 |a Jackson, T.J., Cosh, M.H., Bindlish, R., Starks, P.J., Bosch, D.D., Seyfried, M., Goodrich, D.C., Du, J., Validation of advanced microwave scanning radiometer soil moisture products (2010) Geoscience and Remote Sensing, IEEE Transactions on, 48 (12), pp. 4256-4272. , Dec 
504 |a Jackson, T.J., Schmugge, T.J., Vegetation effects on the microwave emission of soils (1991) Remote Sensing of Environment, 36 (3), pp. 203-212 
504 |a De Jeu, R.A.M., Holmes, T.R.H., Panciera, R., Walker, J.P., Parameterization of the land parameter retrieval model for l-band observations using the nafe'05 data set (2009) Geoscience and Remote Sensing Letters, IEEE, 6 (4), pp. 630-634. , Oct 
504 |a Oneill, P., Chan, S., Njoku, E., Jackson, T., Bindlish, R., Algorithm theoretical basis document (ATBD) SMAP Level 2 & 3 soil moisture (Passive) (2012) Initial Release, 1 
504 |a Bindlish, R., Jackson, T., (2013) Aquarius level-2 Swath Single Orbit Soil Moisture. Version 2, , Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center 
504 |a Centro de Informaci&acuteon Agroclimática (CIAg), , http://www.agro.uba.ar/centros/ciag, Argentina Facultad de Agronomía, Universidad de Buenos AiresA4 - IEEE Geoscience and Remote Sensing Society (IEEE GRSS); The Institute of Electrical and Electronics Engineers 
506 |2 openaire  |e Política editorial 
520 3 |a In this work, several retrieval algorithms were implemented to retrieve soil moisture (sm) and optical depth (τ) from Aquarius/SAC-D observations. Currently used sm retrieval algorithms (H- and V-pol Single Channel Algorithm, SCAH and SCAV; Microwave Polarization Difference Algorithm, MPDA) were computed over Pampas Plains, Argentina. The methodology of a novel Bayesian algorithm developed is also presented, and its results are contrasted with the previous algorithms. Finally, performance metrics for each algorithms were derived using SMOS Level-2 sm and τ as benchmark products. The new Bayesian approach provide the sm retrieval algorithm that exhibited the lowest ubRMSE (0.115m 3/m3), though very close to USDA SCA and SCAV ubRMSE (0.116m3/m3). Nevertheless, some improvements are discussed in Section 4 that might increase significantly the Bayesian algorithm performance. © 2014 IEEE.  |l eng 
593 |a Institute of Astronomy and Space Physics (IAFE), Argentina 
690 1 0 |a AQUARIUS 
690 1 0 |a BAYESIAN INFERENCE 
690 1 0 |a MARKOV CHAIN MONTE CARLO 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a BAYESIAN NETWORKS 
690 1 0 |a INFERENCE ENGINES 
690 1 0 |a MICROWAVES 
690 1 0 |a REMOTE SENSING 
690 1 0 |a SOIL MOISTURE 
690 1 0 |a AQUARIUS 
690 1 0 |a BAYESIAN ALGORITHMS 
690 1 0 |a BAYESIAN APPROACHES 
690 1 0 |a BAYESIAN INFERENCE 
690 1 0 |a MARKOV CHAIN MONTE-CARLO 
690 1 0 |a MICROWAVE POLARIZATIONS 
690 1 0 |a RETRIEVAL ALGORITHMS 
690 1 0 |a SINGLE-CHANNEL ALGORITHMS 
690 1 0 |a ALGORITHMS 
700 1 |a Grings, Francisco Matías 
700 1 |a Barber, M. 
700 1 |a Perna, P. 
700 1 |a Karszenbaum, H. 
711 2 |c Pasadena, CA  |d 24 March 2014 through 27 March 2014  |g Código de la conferencia: 107223 
773 0 |d IEEE Computer Society, 2014  |h pp. 1-4  |p Spec. Meet. Microw. Radiom. Rem. Sens. Environ., MicroRad - Proc.  |n 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, MicroRad 2014 - Proceedings  |z 9781479946440  |t 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, MicroRad 2014 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906739181&doi=10.1109%2fMicroRad.2014.6878896&partnerID=40&md5=15632432529c996cd01952db42a7e3a7  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/MicroRad.2014.6878896  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97814799_v_n_p1_Bruscantini  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814799_v_n_p1_Bruscantini  |y Registro en la Biblioteca Digital 
961 |a paper_97814799_v_n_p1_Bruscantini  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
999 |c 84923