Influence of the dynamics of ions in the admittance of a modulated corona discharge

We present an experimental study of the dynamic impedance in a positive corona discharge that operates as an acoustic transducer. Since the standard equivalent circuits failed to match our experimental results, we considered transit time dependant components. The transit time is determined by the el...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gómez, Pablo Martín
Otros Autores: D'Onofrio, E.M, Santiago, Guillermo Daniel
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Español
Publicado: IEEE Computer Society 2014
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06532caa a22007097a 4500
001 PAPER-23941
003 AR-BaUEN
005 20251009085200.0
008 190411s2014 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84906698783 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
041 0 |a eng  |a spa 
100 1 |a Gómez, Pablo Martín 
245 1 0 |a Influence of the dynamics of ions in the admittance of a modulated corona discharge 
246 3 1 |a Influencia de la dinámica de los iones en la admitancia de una descarga corona modulada 
260 |b IEEE Computer Society  |c 2014 
504 |a Cobine, J.D., (1958) Gaseous Conductors, p. 261. , 1st ed., Dover Publications 
504 |a Raizer, Y.P., (1991) Gas Discharge Physics, pp. 345-351. , 1st ed., Springer- Verlag 
504 |a Parker, K.R., (1996) Applied Electrostatic Precipitations, , 1st ed., Blackie Academic & Professional 
504 |a Chen, J., Davidson, J.H., Ozone production in the positive DC Corona discharge: Model and comparison to experiments (2002) Plasma Chemistry and Plasma Processing, 22, pp. 495-522. , Dec 
504 |a Chul, K., Kwang-Chul, N., Sang-Yoon, K., Jungho, H., Electric propulsion using an alternating positive/negative corona discharge configuration composed of wire emitters and wire collector arrays in air (2011) Applied Physics Letters, 99, pp. 111503-1115033. , Sep 
504 |a Moreau, E., Airflow control by non-thermal plasma actuators (2007) J. Phys. D: Appl. Phys., 40, pp. 605-636. , Jan 
504 |a Béquin, Ph., Joly, V., Herzog, Ph., Modeling of a corona discharge microphone (2013) J. Phys. D: Appl. Phys., 46, pp. 175204-175208. , Apr 
504 |a Bastien, F., Acoustics and gas discharges: Applications to loudspeakers (1987) J. Phys. D: Appl. Phys., 20, pp. 1547-1557. , Dec 
504 |a Béquin, Castor, K., Herzog, Ph., Montembault, V., Modelling plasma loudspeakers (2007) J. Acoust. Soc. Am., 121, pp. 1960-1970. , Apr 
504 |a Eisenberg, N., The driverless tweeter (1961) High Fidelity Magazine, 11, pp. 46-47. , Jan 
504 |a The ionic man (1983) Stereophile Magazine, 6 
504 |a Free, J., Coneless speaker uses plasma driver (1979) Popular Science Magazine, 214, p. 67. , Jun 
504 |a Corona Plasma Tweeter, , http://www.lansche-audio.de/, The Lansche audio website. [Online] 
504 |a Kekez, M.M., Savic, P., Lougheed, G.D., A novel treatment of trichel type phenomena with possible application to stepped-leader phenomena (1982) J. Phys. D: Appl. Phys., 15, pp. 1963-1973. , Oct 
504 |a Matsuzawa, K., Sound sources with corona discharges (1973) J. Acoust. Soc. Am., 54, pp. 494-498. , Aug 
504 |a Alberti, A., Gomez, P.M., Spiousas, I., Eguia, M.C., Broadband resonant cavity inside a two-dimensional sonic crystal J. Phys. D: Appl. Phys., , en revisión 
504 |a Gomez, P.M., Dónofrio, E.M., Santiago, G., Acoustic characteristics and distortion of an ionic loudspeaker IEEE Latin American Transactions, , en revisión 
504 |a Béquin, Montembault, V., Herzog, Ph., Modelling of negative point-to-plane corona loudspeaker (2001) Eur. Phys. J. AP, 15, pp. 57-67 
504 |a Chizhov, M., Eingorn, M., Kulinskii, V., (2013) Stable Sound Wave Generation in Weakly Ionized Air Medium, , arXiv:1304. 7792v1, Apr 
504 |a Llewellyn, F.B., (1941) Electron-Inertia Effects, , 1st ed., Cambridge University PressA4 - Aerolineas Argentinas; et al.; IEEE Argentina; National Scientific and Technical Research Council (CONICET); National University of Rio Negro; U.N.L.P. (Fi) 
506 |2 openaire  |e Política editorial 
520 3 |a We present an experimental study of the dynamic impedance in a positive corona discharge that operates as an acoustic transducer. Since the standard equivalent circuits failed to match our experimental results, we considered transit time dependant components. The transit time is determined by the elapsed time since a carrier leaves one electrode until it reaches the other. From the equations that describe the dynamics of the ions in the discharge, we found similarities with the behavior of a vacuum diode whose input impedance is mainly determined by the transit time. Based on this approach we were able to match our experimental results with the equivalent circuit by adjusting the transit time, which in turn determines the admittance. The transit time and the direct current density allow computing the carrier density which presents good correlation with the dynamic conductance. This way, we show the method is self-consistent and that the transit time influences the corona discharge input admittance. © 2014 IEEE.  |l eng 
593 |a Laboratorio de Acústica y Electroacústica (LACEAC), Departamento de Electrónica, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV, Buenos Aires, Argentina 
593 |a Grupo de Láser, Óptica de Materiales y Aplicaciones Electromagnéticas (GLOMAE), Departamento de Física, Universidad de Buenos Aires, Paseo Colón 850, C1063ACV, Buenos Aires, Argentina 
650 1 7 |2 spines  |a MICA 
690 1 0 |a EQUIVALENT CIRCUITS 
690 1 0 |a CORONA DISCHARGES 
690 1 0 |a DYNAMIC CONDUCTANCE 
690 1 0 |a DYNAMIC IMPEDANCE 
690 1 0 |a GOOD CORRELATIONS 
690 1 0 |a INPUT ADMITTANCE 
690 1 0 |a INPUT IMPEDANCE 
690 1 0 |a POSITIVE CORONA 
690 1 0 |a VACUUM DIODES 
690 1 0 |a ELECTRIC CORONA 
700 1 |a D'Onofrio, E.M. 
700 1 |a Santiago, Guillermo Daniel 
711 2 |c San Carlos de Bariloche  |d 11 June 2014 through 13 June 2014  |g Código de la conferencia: 106975 
773 0 |d IEEE Computer Society, 2014  |h pp. 338-343  |p IEEE Bienn. Congr. Argentina, ARGENCON  |n 2014 IEEE Biennial Congress of Argentina, ARGENCON 2014  |z 9781479942695  |t 2nd IEEE Biennial Congress of Argentina, ARGENCON 2014 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84906698783&doi=10.1109%2fARGENCON.2014.6868516&partnerID=40&md5=1a57ad56ac26021cb234e59ac63b9254  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1109/ARGENCON.2014.6868516  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97814799_v_n_p338_Gomez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814799_v_n_p338_Gomez  |y Registro en la Biblioteca Digital 
961 |a paper_97814799_v_n_p338_Gomez  |b paper  |c PE 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
999 |c 84894