Modelling proton and metal binding to humic substances with the NICA-EPN model

Environmental context The toxicity of metals in the environment is greatly influenced by natural organic matter owing to its ability to bind metals to form complexes that can be immobile and non-bioavailable. Sound mathematical models are important to reliably predict the behaviour of such contamina...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Montenegro, A.C
Otros Autores: Orsetti, S., Molina, F.V
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: CSIRO 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19715caa a22012857a 4500
001 PAPER-23922
003 AR-BaUEN
005 20230518205542.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84903279083 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Montenegro, A.C. 
245 1 0 |a Modelling proton and metal binding to humic substances with the NICA-EPN model 
260 |b CSIRO  |c 2014 
270 1 0 |m Molina, F.V.; Instituto de Química Física de Materiales,Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica,Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina; email: fmolina@qi.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Ephraim, J., Alegret, S., Mathuthu, A., Bicking, M., Malcolm, R.L., Marinsky, J.A., A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids) 2 influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid (1986) Environ. Sci. Technol, 20, p. 354. , 10.1021/ES00146A007 
504 |a Senesi, N., Loffredo, E., (2005) Metal Ion Complexation by Humic Substances, in Chemical Processes in Soils, pp. 563-617. , Eds M. A. Tabatabai, D. L. Sparks) Soil Science Society of America: Madison, WI 
504 |a Sen Gupta, S., Bhattacharyya, K.G., Kinetics of adsorption of metal ions on inorganic materials: A review (2011) Adv. Colloid Interface Sci, 162, p. 39. , 10.1016/J.CIS.2010.12.004 
504 |a Clapp, C.E., Hayes, M.H.B., Simpson, A.J., Kingery, W.L., Chemistry of soil organic matter (2005) Chemical Processes in Soils, pp. 1-150. , Eds M A. Tabatabai, D. L. Sparks Soil Science Society of America: Madison, WI 
504 |a Baldock, J.A., Nelson, P.N., (1999) Soil Organic Matter, in Handbook of Soil Science, pp. B75-B84. , Ed. M. L. Sumner CRC: Boca Raton, Fl 
504 |a Zsolnay, A., Dissolved organic matter: Artefacts, definitions, and functions (2003) Geoderma, 113, p. 187. , 10.1016/S0016-7061(02) 00361-0 
504 |a Orsetti, S., Andrade, E.M., Molina, F.V., Application of a constrained regularization method to extraction of affinity distributions: Proton and metal binding to humic substances (2009) J. Colloid Interface Sci, 336 (377). , 10.1016/J.JCIS.2009.04.049 
504 |a Simpson, A.J., Kingery, W.L., Hayes, M.H., Spraul, M., Humpfer, E., Dvortsak, P., Kerssebaum, R., Hofmann, M., Molecular structures and associations of humic substances in the terrestrial environment (2002) Naturwissenschaften, 89, p. 84. , 10.1007/ S00114-001-0293-0298 
504 |a Hosse, M., Wilkinson, K.J., Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength (2001) Environmental Science and Technology, 35 (21), pp. 4301-4308. , DOI 10.1021/es010038r 
504 |a Duval, J.F.L., Wilkinson, K.J., Van Leeuwen, H.P., Buffle, J., Humic substances are soft and permeable: Evidence from their electrophoretic mobilities (2005) Environ. Sci. Technol, 39, p. 6435. , 10.1021/ ES050082X 
504 |a Buffle, J., Altmann, R.S., Filella, M., Tessier, A., Complexation by natural heterogeneous compounds: Site occupation distribution functions, a normalized description of metal complexation (1990) Geochim. Cosmochim. Acta, 54, p. 1535. , 10.1016/0016-7037(90)90389-3 
504 |a Tipping, E., Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances (1998) Aquatic Geochemistry, 4 (1), pp. 3-48. , DOI 10.1023/A:1009627214459 
504 |a Gustafsson, J.P., Pechova, P., Berggren, D., Modeling metal binding to soils: The role of natural organic matter (2003) Environmental Science and Technology, 37 (12), pp. 2767-2774. , DOI 10.1021/es026249t 
504 |a Goldberg, S., (2005) Equations and Models Describing Adsorption Processes in Soils, in Chemical Processes in Soils, pp. 489-518. , Eds M. A. Tabatabai, D. L. Sparks) Soil Science Society of America: Madison, WI 
504 |a Molina, F.V., (2013) Soil Colloids: Properties and Ion Binding, , CRC Press: Boca Raton FL 
504 |a Tipping, E., Lofts, S., Sonke, J.E., Humic Ion-Binding Model, V., II: A revised parameterisation of cation-binding by humic substances (2011) Environ. Chem, 8, p. 225. , 10.1071/EN11016 
504 |a Kinniburgh, D.G., Milne, C.J., Benedetti, M.F., Pinheiro, J.P., Filius, J., Koopal, L.K., Van Riemsdijk, W.H., Metal ion binding by humic acid: Application of the NICA-Donnan model (1996) Environmental Science and Technology, 30 (5), pp. 1687-1698. , DOI 10.1021/es950695h 
504 |a Benedetti, M.F., Van Riemsdijk, W.H., Koopal, L.K., Humic substances considered as a heterogeneous Donnan gel phase (1996) Environmental Science and Technology, 30 (6), pp. 1805-1813. , DOI 10.1021/es950012y 
504 |a Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Tipping, E., Generic NICA-Donnan model parameters for metal-ion binding by humic substances (2003) Environ. Sci. Technol, 37, p. 958. , 10.1021/ ES0258879 
504 |a Christensen, J.B., Tipping, E., Kinniburgh, D.G., Gron, C., Christensen, T.H., Proton binding by groundwater fulvic acids of different age, origins, and structure modeled with the model v and NICA-Donnan model (1998) Environmental Science and Technology, 32 (21), pp. 3346-3355. , DOI 10.1021/es971134o 
504 |a Avena, M.J., Vermeer, A.W.P., Koopal, L.K., Volume and structure of humic acids studied by viscometrypH and electrolyte concentration effects (1999) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151 (1-2), pp. 213-224. , DOI 10.1016/S0927-7757(98)00504-4, PII S0927775798005044 
504 |a Chilom, G., Rice, J.A., Structural organization of humic acid in the solid state (2009) Langmuir, 25, p. 9012. , 10.1021/LA900750Z 
504 |a Orsetti, S., Andrade, E.M., Molina, F.V., Modeling ion binding to humic substances: Elastic Polyelectrolyte Network model (2010) Langmuir, 26, p. 3134. , 10.1021/LA903086S 
504 |a Orsetti, S., Marco-Brown, J.L., Andrade, E.M., Molina, F.V., PbII binding to humic substances: An equilibrium and spectroscopic study (2013) Environ. Sci. Technol, 47, p. 8325 
504 |a Hill, T.L., Some statistical mechanical models of elastic polyelectrolytes and proteins (1952) J. Chem. Phys, 20, p. 1259. , 10.1063/1. 1700720 
504 |a Dinar, E., Mentel, T.F., Rudich, Y., The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles (2006) Atmos. Chem. Phys, 6, p. 5213. , 10.5194/ACP-6-5213-2006 
504 |a Milne, C.J., Kinniburgh, D.G., Tipping, E., Generic NICA-Donnan model parameters for proton binding by humic substances (2001) Environmental Science and Technology, 35 (10), pp. 2049-2059. , DOI 10.1021/es000123j 
504 |a Matynia, A., Lenoir, T., Causse, B., Spadini, L., Jacquet, T., Manceau, A., Semi-empirical proton binding constants for natural organic matter (2010) Geochim. Cosmochim. Acta, 74, p. 1836. , 10.1016/J.GCA. 2009.12.022 
504 |a Flory, P.J., Themodynamics of high polymer solutions (1942) J. Chem. Phys, 10, p. 51. , 10.1063/1.1723621 
504 |a Flory, P.J., Statistical mechanics of swelling of network structures (1950) J. Chem. Phys, 18, p. 108. , 10.1063/1.1747424 
504 |a Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Borkovec, M., Benedetti, M.F., Avena, M.J., Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency (1999) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151 (1-2), pp. 147-166. , DOI 10.1016/S0927-7757(98)00637-2, PII S0927775798006372 
504 |a Pernet-Coudrier, B., Companys, E., Galceran, J., Morey, M., Mouchel, J.-M., Puy, J., Ruiz, N., Varrault, G., Pb-binding to various dissolved organic matter in urban aquatic systems: Key role of the most hydrophilic fraction (2011) Geochim. Cosmochim. Acta, 75, p. 4005. , 10.1016/J.GCA.2011.04.030 
504 |a Companys, E., Puy, J., Galceran, J., Humic acid complexation to zn and cd determined with the new electroanalytical technique agnes (2007) Environ. Chem, 4, p. 347 
504 |a Christl, I., Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids (2012) Environ. Chem, 9, p. 89. , 10.1071/ EN11112 
504 |a Davies, C.W., (1962) Ion Association, , Butterworths: London 
504 |a Lourakis, M.I.A., (2004) Levmar: Levenberg-Marquardt Nonlinear Least Squares Algorithms in CC11, , Institute of Computer Science, FORTH: Heraklion, Crete, Greece 
504 |a Gustafsson, J.P., (2011) Visual Minteq KTH, , Department of Land and Water Resources Engineering.: Stockholm, Sweden 
504 |a Athavale, V.T., Prabhu, L.H., Vartak, D.G., Solution stability constants of some metal complexes of derivatives of catechol (1966) J. Inorg. Nucl. Chem, 28, p. 1237. , 10.1016/0022-1902(66) 80450-5 
504 |a Furia, E., Porto, R., The hydrogen salicylate ion as ligand. Complex formation equilibria with dioxouranium(VI), neodymium(III) and lead(II) (2004) Annali di Chimica, 94 (11), pp. 795-804. , DOI 10.1002/adic.200490100 
504 |a Gustafsson, J.P., Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model (2001) Journal of Colloid and Interface Science, 244 (1), pp. 102-112. , DOI 10.1006/jcis.2001.7871 
504 |a Lenoir, T., Matynia, A., Manceau, A., Convergence-optimized procedure for applying the NICA-Donnan model to potentiometric titrations of humic substances (2010) Environ. Sci. Technol, 44, p. 6221. , 10.1021/ES1015313 
504 |a Avena, M.J., Koopal, L.K., Van Riemsdijk, W.H., Proton binding to humic acids: Electrostatic and intrinsic interactions (1999) Journal of Colloid and Interface Science, 217 (1), pp. 37-48. , DOI 10.1006/jcis.1999.6317 
504 |a Hay, M.B., Myneni, S.C.B., Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy (2007) Geochimica et Cosmochimica Acta, 71 (14), pp. 3518-3532. , DOI 10.1016/j.gca.2007.03.038, PII S0016703707002293 
504 |a Atalay, Y.B., Carbonaro, R.F., Di Toro, D.M., Distribution of proton dissociation constants for model humic and fulvic acid molecules (2009) Environ. Sci. Technol, 43, p. 3626. , 10.1021/ES803057R 
504 |a Deshmukh, A.P., Pacheco, C., Hay, M.B., Myneni, S.C.B., Structural environments of carboxyl groups in natural organic molecules from terrestrial systems part 2: 2d nmr spectroscopy (2007) Geochimica et Cosmochimica Acta, 71 (14), pp. 3533-3544. , DOI 10.1016/j.gca.2007.03.039, PII S001670370700230X 
504 |a Kirishima, A., Ohnishi, T., Sato, N., Tochiyama, O., Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique (2009) Talanta, 79, p. 446. , 10.1016/J.TALANTA. 2009.04.008 
504 |a Senesi, N., Loffredo, E., The chemistry of soil organic matter (1998) Soil Physical Chemistry, pp. 239-370. , Ed. D. L. Sparks CRC Press: Boca Raton, Fl 
504 |a Pinheiro, J.P., Mota, A.M., Benedetti, M.F., Effect of aluminum competition on lead and cadmium binding to humic acids at variable ionic strength (2000) Environ. Sci. Technol, 34, p. 5137. , 10.1021/ ES0000899 
504 |a Otto, W.H., Burton, S.D., Robert Carper, W., Larive, C.K., Examination of cadmium(II) complexation by the Suwannee River fulvic acid using 113Cd NMR relaxation measurements (2001) Environmental Science and Technology, 35 (24), pp. 4900-4904. , DOI 10.1021/es0108032 
504 |a Xia, K., Bleam, W., Helmke, P.A., Studies of the nature of Cu2 and Pb2 binding sites in soil humic substances using X-ray absorption spectroscopy (1997) Geochim. Cosmochim. Acta, 61, p. 2211. , 10.1016/S0016-7037(97)00079-3 
504 |a Terbouche, A., Ramdane-Terbouche, C.A., Hauchard, D., Djebbar, S., Evaluation of adsorption capacities of humic acids extracted from Algerian soil on polyaniline for application to remove pollutants such as CdII ZnII and NiII and characterization with cavity microelectrode (2011) J. Environ. Sci. (China), 23, p. 1095. , 10.1016/S1001-0742(10) 60521-9 
504 |a Karlsson, T., Persson, P., Skyllberg, U., Complexation of copper(ii) in organic soils and in dissolved organic matter - Exafs evidence for chelate ring structures (2006) Environ. Sci. Technol, 40, p. 2623. , 10.1021/ES052211F 
504 |a Xiong, J., Koopal, L.K., Tan, W., Fang, L., Wang, M., Zhao, W., Liu, F., Weng, L.P., Lead binding to soil fulvic and humic acids: NICA-Donnan modeling and XAFS spectroscopy (2013) Environ. Sci. Technol, 47, p. 11634. , 10.1021/ES402123V 
504 |a Puy, J., Galceran, J., Huidobro, C., Companys, E., Samper, N., Garcés, J.L., Mas, F., Conditional affinity spectra of pb2 humic acid complexation from data obtained with agnes (2008) Environ. Sci. Technol, 42, p. 9289. , 10.1021/ES8021123 
504 |a Manceau, A., Boisset, M.-C., Sarret, G., Hazemann, J.-L., Mench, M., Cambier, P., Prost, R., Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy (1996) Environmental Science and Technology, 30 (5), pp. 1540-1552. , DOI 10.1021/es9505154 
504 |a Arai, Y., Rick, A.R., Saylor, T., Faas, E., Tappero, R., Lanzirotti, A., Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities (2011) J. Soils Sediments, 11, p. 968. , 10.1007/S11368-011-0374-Z 
504 |a Robertson, A.P., (1996) GoethiteHumic Acid Interactions and Their Effects on Copper(II) Binding, , Ph.D. Thesis, Stanford University, Stanford, CA 
504 |a Hsu, P.H., Bates, T.F., Formation of X-ray amorphous and crystalline aluminium hydroxides (1964) Mineral. Mag, 33, p. 749. , 10.1180/ MINMAG196403326404 
504 |a Stolpe, B., Guo, L., Shiller, A.M., Aiken, G.R., Abundance, size distributions and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS (2013) Geochim. Cosmochim. Acta, 105, p. 221. , 10.1016/J.GCA.2012.11.018 
504 |a Tan, W., Xiong, J., Li, Y., Wang, M., Weng, L., Koopal, L.K., Proton binding to soil humic and fulvic acids: Experiments and NICA- Donnan modeling (2013) Colloids Surf. A Physicochem. Eng. Asp, 436, p. 1152. , 10.1016/J.COLSURFA.2013.08.010 
504 |a Browne, B.A., Driscoll, C.T., Ph-dependent binding of aluminum by a fulvic acid (1993) Environ. Sci. Technol, 27, p. 915. , 10.1021/ ES00042A014 
504 |a Pinheiro, J.P., Mota, A.M., Benedetti, M.F., Lead and calcium binding to fulvic acids: Salt effect and competition (1999) Environmental Science and Technology, 33 (19), pp. 3398-3404. , DOI 10.1021/es990210f 
504 |a Cabaniss, S.E., Shuman, M.S., Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria (1988) Geochim. Cosmochim. Acta, 52, p. 185. , 10.1016/0016-7037(88)90066-X 
504 |a Christl, I., Milne, C.J., Kinniburgh, D.G., Kretzschmar, R., Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding (2001) Environmental Science and Technology, 35 (12), pp. 2512-2517. , DOI 10.1021/es0002520 
504 |a Benedetti, M.F., Milne, C.J., Kinniburgh, D.G., Van Riemsdijk, W.H., Koopal, L.K., Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model (1995) Environ. Sci. Technol, 29, p. 446. , 10.1021/ES00002A022 
504 |a Mota, A.M., Rato, A., Brazia, C., Gonçalves, M.L.S., Competition of Al3 in complexation of humic matter with Pb2 : A comparative study with other ions (1996) Environ. Sci. Technol, 30, p. 1970. , 10.1021/ ES9507123 
504 |a Plaza, C., Senesi, N., Polo, A., Brunetti, G., Acid-base properties of humic and fulvic acids formed during composting (2005) Environmental Science and Technology, 39 (18), pp. 7141-7146. , DOI 10.1021/es050613h 
504 |a Ritchie, J.D., Perdue, E.M., Proton-binding study of standard and reference fulvic acids, humic acids, and natural organicmatter (2003) Geochim. Cosmochim. Acta, 67, p. 85. , 10.1016/S0016-7037(02)01044--Rftxt 
520 3 |a Environmental context The toxicity of metals in the environment is greatly influenced by natural organic matter owing to its ability to bind metals to form complexes that can be immobile and non-bioavailable. Sound mathematical models are important to reliably predict the behaviour of such contaminants, and how they are affected by organic matter and other environmental colloids. Here a new model is discussed and compared with precedent ones. Abstract The mathematical modelling of metal cation-natural organic matter interactions is a fundamental tool in predicting the state and fate of pollutants in the environment. In this work, the binding of protons and metal cations to humic substances is modelled applying the Elastic Polyelectrolyte Network (EPN) electrostatic model with the Non-Ideal Competitive Adsorption (NICA) isotherm as the intrinsic part (NICA-EPN model). Literature data of proton and metal binding to humic substances at different pH and ionic strength values are analysed, discussing in depth the model predictions. The NICA-EPN model is found to describe well these phenomena. The electrostatic contribution to the Gibbs free energy of adsorbate-humic interaction in the EPN model is lower than that predicted by the Donnan phase model; the intrinsic mean binding constants for protons and metal cations are generally higher, closer to independent estimations and to the range of acid-base and complexation equilibrium values for common carboxylic acids. The results for metal cations are consistent with recent literature findings. The model predicts shrinking of the humic particles with increased metal binding, as a consequence of net charge decrease. © CSIRO 2014.  |l eng 
593 |a Instituto de Química Física de Materiales,Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica,Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina 
593 |a Institut für Geowissenschaften, Zentrum für Angewandte Geowissenschaften, Eberhard-Karls Universität Tübingen, D-72074 Tübingen, Germany 
690 1 0 |a ADSORPTION 
690 1 0 |a CARBOXYLIC ACID 
690 1 0 |a CATION 
690 1 0 |a CHEMICAL BINDING 
690 1 0 |a COMPLEXATION 
690 1 0 |a ENVIRONMENTAL FATE 
690 1 0 |a GIBBS FREE ENERGY 
690 1 0 |a HUMIC SUBSTANCE 
690 1 0 |a ISOTHERM 
690 1 0 |a METAL 
690 1 0 |a NUMERICAL MODEL 
690 1 0 |a POLLUTANT TRANSPORT 
690 1 0 |a POLYMER 
700 1 |a Orsetti, S. 
700 1 |a Molina, F.V. 
773 0 |d CSIRO, 2014  |g v. 11  |h pp. 318-332  |k n. 3  |p Environ. Chem.  |x 14482517  |t Environmental Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903279083&doi=10.1071%2fEN13214&partnerID=40&md5=25030ed1d5eb32113e38d666ab0ce1a8  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1071/EN13214  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14482517_v11_n3_p318_Montenegro  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14482517_v11_n3_p318_Montenegro  |y Registro en la Biblioteca Digital 
961 |a paper_14482517_v11_n3_p318_Montenegro  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84875