The subvariety of commutative residuated lattices represented by twist-products

Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety K of commutative residuated lattices that can be represented by twis...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Busaniche, M.
Otros Autores: Cignoli, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2014
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06196caa a22006257a 4500
001 PAPER-23892
003 AR-BaUEN
005 20230518205539.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84893746805 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Busaniche, M. 
245 1 4 |a The subvariety of commutative residuated lattices represented by twist-products 
260 |c 2014 
270 1 0 |m Busaniche, M.; Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN Santa Fe, Argentina; email: mbusaniche@santafe-conicet.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Almukdad, A., Nelson, D., Constructible falsity and inexact predicates (1984) J. Symb. Logic, 49, pp. 231-233 
504 |a Barr, M., star operator-autonomous categories (1979) Lect. Notes Math, 752. , Springer, New York 
504 |a Blount, K., Tsinakis, C., The structure of residuated lattices (2003) Internat. J. Algebra Comput., 13, pp. 437-461 
504 |a Busaniche, M., Cignoli, R., Residuated lattices as an algebraic semantics for paraconsistent Nelson logic (2009) J. Logic Comput., 19, pp. 1019-1029 
504 |a Busaniche, M., Cignoli, R., Constructive logic with strong negation as a substructural logic (2010) J. Logic Comput., 20, pp. 761-793 
504 |a Busaniche, M., Cignoli, R., Remarks on an algebraic semantics for paraconsistent Nelson's logic (2011) Manuscrito, Center of Logic, Epistemology and the History of Science, 34, pp. 99-114 
504 |a Castiglioni, J.L., Menni, M., Sagastume, M., On some categories of involutive centered residuated lattices (2008) Studia Logica, 90, pp. 93-124 
504 |a Cignoli, R., The class of Kleene algebras satisfying an interpolation property and Nelson algebras (1986) Algebra Universalis, 23, pp. 262-292 
504 |a Cignoli, R., Torrens, A., Free algebras in varieties of BL-algebras with a Boolean retract (2002) Algebra Universalis, 48, pp. 55-79 
504 |a Cignoli, R., Torrens, A., Glivenko like theorems in natural expansions of BCK-logics (2004) Math. Logic Quart., 50, pp. 111-125 
504 |a Fidel, M.M., An algebraic study of a propositional system of Nelson (1978) Mathematical Logic. Proceedings of the First Brazilian Conference. Lectures in Pure and Applied Mathematics, 39, pp. 99-117. , In: Arruda, A. I., da Costa, N. C., Chuaqui, A. R. (eds.), Marcel Dekker, New York 
504 |a Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse at Substructural Logics (2007) Studies in Logics and the Foundations of Mathematics, 151. , Elsevier, New York 
504 |a Galatos, N., Raftery, J.G., Adding involution to residuated structures (2004) Studia Logica, 77, pp. 181-207 
504 |a Hart, J.B., Rafter, L., Tsinakis, C., The structure of commutative residuated lattices (2002) Internat. J. Algebra Comput., 12, pp. 509-524 
504 |a Kalman, J., Lattices with involution (1958) Trans. Amer. Math. Soc., 87, pp. 485-491 
504 |a Kracht, M., On extensions of intermediate logics by strong negation (1998) J. Philos. Logic, 27, pp. 49-73 
504 |a Mac, L.S., (1998) Categories for the Working Mathematician, , 2nd edn. Graduate Texts in Mathematics, vol. 5. Springer, Berlin 
504 |a Odintsov, S.P., Algebraic semantics for paraconsistent Nelson's logic (2003) J. Logic Comput., 13, pp. 453-468 
504 |a Odintsov, S.P., On the representation of N4-lattices (2004) Studia Logica, 76, pp. 385-405 
504 |a Odintsov, S.P., Constructive Negations and Paraconsistency (2008) Trends in Logic, Studia Logica Library, 26. , Springer, Dordrecht 
504 |a Sendlewski, A., Nelson algebras through Heyting ones (1990) I. Studia Logica, 49, pp. 105-126 
504 |a Tsinakis, C., Wille, A.M., Minimal varieties of involutive residuated lattices (2006) Studia Logica, 83, pp. 407-423 
504 |a Vakarelov, D., Notes on N-lattices and constructive logic with strong negation (1977) Studia Logica, 34, pp. 109-125 
520 3 |a Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety K of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of K, a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in K, and we analyze the subvariety of representable algebras in K. Finally, we consider some specific class of bounded integral commutative residuated lattices G, and for each fixed element L ∈ G, we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras. © 2014 Springer Basel.  |l eng 
593 |a Instituto de Matemática Aplicada del Litoral- FIQ, CONICET-UNL, Guemes 3450, S3000GLN Santa Fe, Argentina 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina 
690 1 0 |a GLIVENKO RESIDUATED LATTICES 
690 1 0 |a INVOLUTION 
690 1 0 |a RESIDUATED LATTICES 
690 1 0 |a TWIST-PRODUCTS 
700 1 |a Cignoli, R. 
773 0 |d 2014  |g v. 71  |h pp. 5-22  |k n. 1  |p Algebra Univers.  |x 00025240  |w (AR-BaUEN)CENRE-267  |t Algebra Universalis 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893746805&doi=10.1007%2fs00012-014-0265-4&partnerID=40&md5=b5f3449b7f39335490ac752a004ea63a  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00012-014-0265-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00025240_v71_n1_p5_Busaniche  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00025240_v71_n1_p5_Busaniche  |y Registro en la Biblioteca Digital 
961 |a paper_00025240_v71_n1_p5_Busaniche  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84845