Underlying Thermodynamics of pH-Dependent Allostery

Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Di Russo, N.V
Otros Autores: Martí, M.A, Roitberg, A.E
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2014
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 20372caa a22017537a 4500
001 PAPER-23795
003 AR-BaUEN
005 20230518205532.0
008 190411s2014 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84927558563 
024 7 |2 cas  |a Hemeproteins; nitrophorin; Recombinant Proteins; Salivary Proteins and Peptides 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPCBF 
100 1 |a Di Russo, N.V. 
245 1 0 |a Underlying Thermodynamics of pH-Dependent Allostery 
260 |b American Chemical Society  |c 2014 
270 1 0 |m Roitberg, A.E.; Quantum Theory Project, Department of Chemistry, University of FloridaUnited States 
506 |2 openaire  |e Política editorial 
504 |a Garcia-Moreno, B., Adaptations of Proteins to Cellular and Subcellular pH (2009) J. Biol., 8, p. 98 
504 |a Schönichen, A., Webb, B.A., Jacobson, M.P., Barber, D.L., Considering Protonation as a Posttranslational Modification Regulating Protein Structure and Function (2013) Annu. Rev. Biophys., 42, pp. 289-314 
504 |a Webb, B.A., Chimenti, M., Jacobson, M.P., Barber, D.L., Dysregulated pH: A Perfect Storm for Cancer Progression (2011) Nat. Rev. Cancer, 11, pp. 671-677 
504 |a Srivastava, J., Barber, D.L., Jacobson, M.P., Intracellular pH Sensors: Design Principles and Functional Significance (2007) Physiology, 22, pp. 30-39 
504 |a Polgár, T., Keserü, G.M., Virtual Screening for B-Secretase (BACE1) Inhibitors Reveals the Importance of Protonation States at Asp32 and Asp228 (2005) J. Med. Chem., 48, pp. 3749-3755 
504 |a Polgár, T., Magyar, C., Simon, I., Keserü, G.M., Impact of Ligand Protonation on Virtual Screening against B-Secretase (BACE1) (2007) J. Chem. Inf. Model., 47, pp. 2366-2373 
504 |a Pey, A.L., Rodriguez-Larrea, D., Gavira, J.A., Garcia-Moreno, B., Sanchez-Ruiz, J.M., Modulation of Buried Ionizable Groups in Proteins with Engineered Surface Charge (2010) J. Am. Chem. Soc., 132, pp. 1218-1219 
504 |a Zimenkov, Y., Dublin, S.N., Ni, R., Tu, R.S., Breedveld, V., Apkarian, R.P., Conticello, V.P., Rational Design of a Reversible pH-Responsive Switch for Peptide Self-Assembly (2006) J. Am. Chem. Soc., 128, pp. 6770-6771 
504 |a Sarkar, C.A., Lowenhaupt, K., Horan, T., Boone, T.C., Tidor, B., Lauffenburger, D.A., Rational Cytokine Design for Increased Lifetime and Enhanced Potency Using pH-Activated "histidine Switching" (2002) Nat. Biotechnol., 20, pp. 908-913 
504 |a Murtaugh, M.L., Fanning, S.W., Sharma, T.M., Terry, A.M., Horn, J.R., A Combinatorial Histidine Scanning Library Approach to Engineer Highly pH-Dependent Protein Switches (2011) Protein Sci., 20, pp. 1619-1631 
504 |a Idili, A., Vallée-Bélisle, A., Ricci, F., Programmable pH-Triggered DNA Nanoswitches (2014) J. Am. Chem. Soc., 136, pp. 5836-5839 
504 |a Srivastava, J., Barreiro, G., Groscurth, S., Gingras, A.R., Goult, B.T., Critchley, D.R., Kelly, M.J.S., Barber, D.L., Structural Model and Functional Significance of pH-Dependent Talin-Actin Binding for Focal Adhesion Remodeling (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 14436-14441 
504 |a Harris, T.K., Turner, G.J., Structural Basis of Perturbed pKa Values of Catalytic Groups in Enzyme Active Sites (2002) IUBMB Life, 53, pp. 85-98 
504 |a Grimsley, G.R., Scholtz, J.M., Pace, C.N., A Summary of the Measured pK Values of the Ionizable Groups in Folded Proteins (2009) Protein Sci., 18, pp. 247-251 
504 |a Wyman, Jr.J., Heme Proteins (1948) Advances in Protein Chemistry, pp. 407-531. , Anson, M. L., Edsall, J. T., Eds.; Academic Press: Waltham, MA 
504 |a Yang, A.-S., Honig, B., On the pH Dependence of Protein Stability (1993) J. Mol. Biol., 231, pp. 459-474 
504 |a Antosiewicz, J., McCammon, J.A., Gilson, M.K., Prediction of pH-Dependent Properties of Proteins (1994) J. Mol. Biol., 238, pp. 415-436 
504 |a Bashford, D., Karplus, M., Multiple-Site Titration Curves of Proteins: An Analysis of Exact and Approximate Methods for Their Calculation (1991) J. Phys. Chem., 95, pp. 9556-9561 
504 |a Georgescu, R.E., Alexov, E.G., Gunner, M.R., Combining Conformational Flexibility and Continuum Electrostatics for Calculating pK<inf>a</inf>s in Proteins (2002) Biophys. J., 83, pp. 1731-1748 
504 |a Karp, D.A., Gittis, A.G., Stahley, M.R., Fitch, C.A., Stites, W.E., García-Moreno, E.B., High Apparent Dielectric Constant Inside a Protein Reflects Structural Reorganization Coupled to the Ionization of an Internal Asp (2007) Biophys. J., 92, pp. 2041-2053 
504 |a Whitten, S.T., García-Moreno, E.B., Hilser, V.J., Local Conformational Fluctuations Can Modulate the Coupling between Proton Binding and Global Structural Transitions in Proteins (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 4282-4287 
504 |a Shi, C., Wallace, J.A., Shen, J.K., Thermodynamic Coupling of Protonation and Conformational Equilibria in Proteins: Theory and Simulation (2012) Biophys. J., 102, pp. 1590-1597 
504 |a Goh, G.B., Laricheva, E.N., Brooks, C.L., Uncovering pH-Dependent Transient States of Proteins with Buried Ionizable Residues (2014) J. Am. Chem. Soc., 136, pp. 8496-8499 
504 |a Tanford, C., Ionization-Linked Changes in Protein Conformation. I. Theory (1961) J. Am. Chem. Soc., 83, pp. 1628-1634 
504 |a Kondrashov, D.A., Roberts, S.A., Weichsel, A., Montfort, W.R., Protein Functional Cycle Viewed at Atomic Resolution: Conformational Change and Mobility in Nitrophorin 4 as a Function of pH and NO Binding (2004) Biochemistry, 43, pp. 13637-13647 
504 |a Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A., Montfort, W.R., Crystal Structures of a Nitric Oxide Transport Protein from a Blood-Sucking Insect (1998) Nat. Struct. Mol. Biol., 5, pp. 304-309 
504 |a Weichsel, A., Andersen, J.F., Roberts, S.A., Montfort, W.R., Nitric Oxide Binding to Nitrophorin 4 Induces Complete Distal Pocket Burial (2000) Nat. Struct. Mol. Biol., 7, pp. 551-554 
504 |a Maes, E.M., Roberts, S.A., Weichsel, A., Montfort, W.R., Ultrahigh Resolution Structures of Nitrophorin 4: Heme Distortion in Ferrous CO and NO Complexes (2005) Biochemistry, 44, pp. 12690-12699 
504 |a Di Russo, N.V., Estrin, D.A., Martí, M.A., Roitberg, A.E., PH-Dependent Conformational Changes in Proteins and Their Effect on Experimental p K <inf>a</inf>s: The Case of Nitrophorin 4 (2012) PLoS Comput. Biol., 8, p. e1002761 
504 |a Martí, M.A., Lebrero, M.C.G., Roitberg, A.E., Estrin, D.A., Bond or Cage Effect: How Nitrophorins Transport and Release Nitric Oxide (2008) J. Am. Chem. Soc., 130, pp. 1611-1618 
504 |a Menyhárd, D.K., Keserü, G.M., Protonation State of Asp30 Exerts Crucial Influence over Surface Loop Rearrangements Responsible for NO Release in Nitrophorin 4 (2005) FEBS Lett., 579, pp. 5392-5398 
504 |a Martí, M.A., Estrin, D.A., Roitberg, A.E., Molecular Basis for the pH Dependent Structural Transition of Nitrophorin 4 (2009) J. Phys. Chem. B, 113, pp. 2135-2142 
504 |a Swails, J.M., Meng, Y., Walker, F.A., Marti, M.A., Estrin, D.A., Roitberg, A.E., PH-Dependent Mechanism of Nitric Oxide Release in Nitrophorins 2 and 4 (2009) J. Phys. Chem. B, 113, pp. 1192-1201 
504 |a Montfort, W.R., Weichsel, A., Andersen, J.F., Nitrophorins and Related Antihemostatic Lipocalins from Rhodnius Prolixus and Other Blood-Sucking Arthropods (2000) Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol., 1482, pp. 110-118 
504 |a Champagne, D.E., Nussenzveig, R.H., Ribeiro, J.M.C., Purification, Partial Characterization, and Cloning of Nitric Oxide-Carrying Heme Proteins (Nitrophorins) from Salivary Glands of the Blood-Sucking Insect Rhodnius Prolixus (1995) J. Biol. Chem., 270, pp. 8691-8695 
504 |a Maes, E.M., Weichsel, A., Andersen, J.F., Shepley, D., Montfort, W.R., Role of Binding Site Loops in Controlling Nitric Oxide Release: Structure and Kinetics of Mutant Forms of Nitrophorin 4 (2004) Biochemistry, 43, pp. 6679-6690 
504 |a Nienhaus, K., Maes, E.M., Weichsel, A., Montfort, W.R., Nienhaus, G.U., Structural Dynamics Controls Nitric Oxide Affinity in Nitrophorin 4 (2004) J. Biol. Chem., 279, pp. 39401-39407 
504 |a Abbruzzetti, S., He, C., Ogata, H., Bruno, S., Viappiani, C., Knipp, M., Heterogeneous Kinetics of the Carbon Monoxide Association and Dissociation Reaction to Nitrophorin 4 and 7 Coincide with Structural Heterogeneity of the Gate-Loop (2012) J. Am. Chem. Soc., 134, pp. 9986-9998 
504 |a Benabbas, A., Ye, X., Kubo, M., Zhang, Z., Maes, E.M., Montfort, W.R., Champion, P.M., Ultrafast Dynamics of Diatomic Ligand Binding to Nitrophorin 4 (2010) J. Am. Chem. Soc., 132, pp. 2811-2820 
504 |a Cheng, M., Brookes, J.F., Montfort, W.R., Khalil, M., PH-Dependent Picosecond Structural Dynamics in the Distal Pocket of Nitrophorin 4 Investigated by 2D IR Spectroscopy (2013) J. Phys. Chem. B, 117, pp. 15804-15811 
504 |a Kirchhoff, L.V., American Trypanosomiasis (Chagas' Disease): A Tropical Disease Now in the United States (1993) N. Engl. J. Med., 329, pp. 639-644 
504 |a Andersen, J.F., Ding, X.D., Balfour, C., Shokhireva, T.K., Champagne, D.E., Walker, F.A., Montfort, W.R., Kinetics and Equilibria in Ligand Binding by Nitrophorins 1-4: Evidence for Stabilization of a Nitric Oxide-Ferriheme Complex through a Ligand-Induced Conformational Trap (2000) Biochemistry, 39, pp. 10118-10131 
504 |a Alexov, E., Mehler, E.L., Baker, N.M., Baptista, A., Huang, Y., Milletti, F., Erik Nielsen, J., Olsson, M.H.M., Progress in the Prediction of pKa Values in Proteins (2011) Proteins: Struct., Funct., Bioinf., 79, pp. 3260-3275 
504 |a Van Vlijmen, H.W.T., Schaefer, M., Karplus, M., Improving the Accuracy of Protein pKa Calculations: Conformational Averaging versus the Average Structure (1998) Proteins: Struct., Funct., Bioinf., 33, pp. 145-158 
504 |a Kuhn, B., Kollman, P.A., Stahl, M., Prediction of pKa Shifts in Proteins Using a Combination of Molecular Mechanical and Continuum Solvent Calculations (2004) J. Comput. Chem., 25, pp. 1865-1872 
504 |a Kato, M., Warshel, A., Using a Charging Coordinate in Studies of Ionization Induced Partial Unfolding (2006) J. Phys. Chem. B, 110, pp. 11566-11570 
504 |a Khandogin, J., Brooks, C.L., Toward the Accurate First-Principles Prediction of Ionization Equilibria in Proteins (2006) Biochemistry, 45, pp. 9363-9373 
504 |a Lee, M.S., Salsbury, F.R., Brooks, C.L., Constant-pH Molecular Dynamics Using Continuous Titration Coordinates (2004) Proteins: Struct., Funct., Bioinf., 56, pp. 738-752 
504 |a Khandogin, J., Brooks, C.L., Constant pH Molecular Dynamics with Proton Tautomerism (2005) Biophys. J., 89, pp. 141-157 
504 |a Wallace, J.A., Shen, J.K., Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange (2011) J. Chem. Theory Comput., 7, pp. 2617-2629 
504 |a Mongan, J., Case, D.A., McCammon, J.A., Constant pH Molecular Dynamics in Generalized Born Implicit Solvent (2004) J. Comput. Chem., 25, pp. 2038-2048 
504 |a De Oliveira, C.A.F., Hamelberg, D., McCammon, J.A., Coupling Accelerated Molecular Dynamics Methods with Thermodynamic Integration Simulations (2008) J. Chem. Theory Comput., 4, pp. 1516-1525 
504 |a Williams, S.L., De Oliveira, C.A.F., McCammon, J.A., Coupling Constant pH Molecular Dynamics with Accelerated Molecular Dynamics (2010) J. Chem. Theory Comput., 6, pp. 560-568 
504 |a Baptista, A.M., Martel, P.J., Petersen, S.B., Simulation of Protein Conformational Freedom as a Function of pH: Constant-pH Molecular Dynamics Using Implicit Titration (1997) Proteins: Struct., Funct., Bioinf., 27, pp. 523-544 
504 |a Baptista, A.M., Teixeira, V.H., Soares, C.M., Constant-pH Molecular Dynamics Using Stochastic Titration (2002) J. Chem. Phys., 117, pp. 4184-4200 
504 |a Swails, J.M., Roitberg, A.E., Enhancing Conformation and Protonation State Sampling of Hen Egg White Lysozyme Using pH Replica Exchange Molecular Dynamics (2012) J. Chem. Theory Comput., 8, pp. 4393-4404 
504 |a Götz, A.W., Williamson, M.J., Xu, D., Poole, D., Le Grand, S., Walker, R.C., Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born (2012) J. Chem. Theory Comput., 8, pp. 1542-1555 
504 |a Xu, D., Williamson, M.J., Walker, R.C., Advancements in Molecular Dynamics Simulations of Biomolecules on Graphical Processing Units (2010) Annual Reports in Computational Chemistry, 6, pp. 2-19. , Wheeler. R. A., Ed.; Elsevier: Amsterdam 
504 |a Friedrichs, M.S., Eastman, P., Vaidyanathan, V., Houston, M., Legrand, S., Beberg, A.L., Ensign, D.L., Pande, V.S., Accelerating Molecular Dynamic Simulation on Graphics Processing Units (2009) J. Comput. Chem., 30, pp. 864-872 
504 |a Harvey, M.J., Giupponi, G., Fabritiis, G.D., ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale (2009) J. Chem. Theory Comput., 5, pp. 1632-1639 
504 |a Brown, W.M., Wang, P., Plimpton, S.J., Tharrington, A.N., Implementing Molecular Dynamics on Hybrid High Performance Computers: Short Range Forces (2011) Comput. Phys. Commun., 182, pp. 898-911 
504 |a Bergonzo, C., Campbell, A.J., De Los Santos, C., Grollman, A.P., Simmerling, C., Energetic Preference of 8-oxoG Eversion Pathways in a DNA Glycosylase (2011) J. Am. Chem. Soc., 133, pp. 14504-14506 
504 |a Shan, Y., Seeliger, M.A., Eastwood, M.P., Frank, F., Xu, H., Jensen M.Ø, Dror, R.O., Shaw, D.E., A Conserved Protonation-Dependent Switch Controls Drug Binding in the Abl Kinase (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 139-144 
504 |a Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, H.M., Baker, E.N., Jameson, G.B., Structural Basis of the Tanford Transition of Bovine B-Lactoglobulin (1998) Biochemistry, 37, pp. 14014-14023 
504 |a Case, D.A., Darden, T.A., Cheatham, T.E., III, Simmerling, C.L., Wang, J., Duke, R.E., Luo, R., Merz, K.M., (2012) AMBER 12, , University of California: San Francisco 
504 |a Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters (2006) Proteins: Struct., Funct., Bioinf., 65, pp. 712-725 
504 |a Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., Biase, P.M.D., Lella, S.D., Lebrero, M.C.G., Perissinotti, L.L., Modeling Heme Proteins Using Atomistic Simulations (2006) Phys. Chem. Chem. Phys., 8, pp. 5611-5628 
504 |a Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of N-Alkanes (1977) J. Comput. Phys., 23, pp. 327-341 
504 |a Sindhikara, D.J., Kim, S., Voter, A.F., Roitberg, A.E., Bad Seeds Sprout Perilous Dynamics: Stochastic Thermostat Induced Trajectory Synchronization in Biomolecules (2009) J. Chem. Theory Comput., 5, pp. 1624-1631 
504 |a Onufriev, A., Bashford, D., Case, D.A., Exploring Protein Native States and Large-Scale Conformational Changes with a Modified Generalized Born Model (2004) Proteins: Struct., Funct., Bioinf., 55, pp. 383-394 
504 |a O'Neil, L.L., Grossfield, A., Wiest, O., Base Flipping of the Thymine Dimer in Duplex DNA (2007) J. Phys. Chem. B, 111, pp. 11843-11849 
520 3 |a Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pK<inf>a</inf>s in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pK<inf>a</inf> only through the conformational equilibria, keeping the same conformation-specific pK<inf>a</inf>s, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger. © 2014 American Chemical Society.  |l eng 
536 |a Detalles de la financiación: National Stroke Foundation, NSF, OCI 07-25070 
536 |a Detalles de la financiación: Petroleum Research Atlantic Canada, PRAC, OCI-1036208 
536 |a Detalles de la financiación: National Stroke Foundation, NSF, OCI-1147910 
536 |a Detalles de la financiación: Ministerio de Ciencia, Tecnología e Innovación Productiva, MINCyT, PICT-2010-416 
593 |a Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL 32611, United States 
593 |a Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina 
690 1 0 |a AMINO ACIDS 
690 1 0 |a CONFORMATIONS 
690 1 0 |a EQUILIBRIUM CONSTANTS 
690 1 0 |a FREE ENERGY 
690 1 0 |a MOLECULAR BIOLOGY 
690 1 0 |a PH SENSORS 
690 1 0 |a PROTEINS 
690 1 0 |a PROTONATION 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a ACCURATE ESTIMATION 
690 1 0 |a CONFORMATIONAL CHANGE 
690 1 0 |a CONFORMATIONAL EQUILIBRIUM 
690 1 0 |a CONFORMATIONAL STATE 
690 1 0 |a FREE ENERGY LANDSCAPE 
690 1 0 |a MOLECULAR EVOLUTION 
690 1 0 |a PH-DEPENDENT ACTIVITY 
690 1 0 |a THERMODYNAMIC MODEL 
690 1 0 |a PH EFFECTS 
690 1 0 |a HEMOPROTEIN 
690 1 0 |a NITROPHORIN 
690 1 0 |a RECOMBINANT PROTEIN 
690 1 0 |a SALIVA PROTEIN 
690 1 0 |a AMINO ACID SUBSTITUTION 
690 1 0 |a BIOSYNTHESIS 
690 1 0 |a CHEMISTRY 
690 1 0 |a GENETICS 
690 1 0 |a KINETICS 
690 1 0 |a METABOLISM 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a PROTEIN TERTIARY STRUCTURE 
690 1 0 |a THERMODYNAMICS 
690 1 0 |a AMINO ACID SUBSTITUTION 
690 1 0 |a HEMEPROTEINS 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a KINETICS 
690 1 0 |a MOLECULAR DYNAMICS SIMULATION 
690 1 0 |a PROTEIN STRUCTURE, TERTIARY 
690 1 0 |a RECOMBINANT PROTEINS 
690 1 0 |a SALIVARY PROTEINS AND PEPTIDES 
690 1 0 |a THERMODYNAMICS 
650 1 7 |2 spines  |a PH 
650 1 7 |2 spines  |a PH 
700 1 |a Martí, M.A. 
700 1 |a Roitberg, A.E. 
773 0 |d American Chemical Society, 2014  |g v. 118  |h pp. 12818-12826  |k n. 45  |p J Phys Chem B  |x 15206106  |w (AR-BaUEN)CENRE-5879  |t Journal of Physical Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84927558563&doi=10.1021%2fjp507971v&partnerID=40&md5=14af49c009c4b0042c767ccc74f2efb4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp507971v  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15206106_v118_n45_p12818_DiRusso  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v118_n45_p12818_DiRusso  |y Registro en la Biblioteca Digital 
961 |a paper_15206106_v118_n45_p12818_DiRusso  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 84748