Estimating winter and spring rainfall in the comahue region (argentine) using statistical techniques

Most energy resources of Argentina come from hydroelectric stations operating in the Comahue region, like "El Chocon" and "Piedra del Aguila". The Comahue region is located in the area of the Andes range, between 38°S and 43°S and two main basins are located there: the Limay Rive...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: González, M.H
Otros Autores: Cariaga, M.L
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Nova Science Publishers, Inc. 2011
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08976caa a22006137a 4500
001 PAPER-23753
003 AR-BaUEN
005 20230518205529.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84951953084 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a González, M.H. 
245 1 0 |a Estimating winter and spring rainfall in the comahue region (argentine) using statistical techniques 
260 |b Nova Science Publishers, Inc.  |c 2011 
270 1 0 |m González, M.H.; Departamento de Ciencias de la Atmósfera y los Océanos - FCEN-UBAArgentina; email: gonzalez@cima.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aceituno, P., On the functioning of the Southern Oscillation in the South American sector. Part I: surface climate (1988) Monthly Weather Review, 116, pp. 505-524 
504 |a Aceituno, P., Garreaud, R., Impactos de los fenómenos El Niño y La Niña sobre regímenes fluviométricos andinos (1995) Rev Soc Chilena Ing Hidráulica, 10 (2), pp. 33-43 
504 |a Compagnucci, R., Vargas, W., Inter-annual variability of the Cuyo river streamflowin the Argentinean Andean Mountains and ENSO events (1998) Int J Climatol, 18, pp. 1593-1609 
504 |a Compagnucci, R., Araneo, D., Identificación de áreas de homogeneidad estadística para los caudales de los ríos andinos argentinos y su relación con la circulación atmosférica y la temperatura superficial del mar (2005) Meteorologica, 30 (1-2), pp. 41-54 
504 |a Darlington, R.B., (1990) Regression and linear models, p. 542. , McGraw-Hill, New York, NY 
504 |a Garcia Morales, M.B., Dubus, L., Forecasting precipitation for hydroelectric power management: how to exploit GCM`seasonal ensamble forecast (2007) Int J Climatol, 27 (12), pp. 1691-1705 
504 |a Gissila, T., Black, E., Grime, D.I.F., Slingo, J.M., Seasonal forecasting of the Ethiopian summer rains (2004) Int. J. Climatol, 24, pp. 1345-1358 
504 |a González, M.H., Flores, O.K., La posible incidencia de los océanos en la precipitación en los Andes Centrales de Argentina (2008) Prepint II Congreso Internacional sobre Gestión y Tratamiento Integral del Agua, , Córdoba, Argentina 
504 |a González, M.H., Vera, C.S., Interannual winter rainfall variability in Southern Andes (2009) Int J Climatol, , In press 
504 |a González, M.H., Losano, F., La influencia de la circulación atmosférica sobre la precipitación de Mayo, , Junio y Julio en las cuencas de los ríos Limay y Neuquén. Preprint CONGREMET X, CLIMET XIII 2009, Buenos Aires, Argentina 
504 |a González, M.H., Cariaga, M.L., An approach to seasonal forecasting of summer rainfall in Buenos Aires, Argentina (2009) Atmósfera, 22 (3), pp. 265-279 
504 |a Gonzalez, M.H., Skansi, M.M., Losano, F., Seasonal winter rainfall prediction in the Comahue region (Argentine) (2009) Atmosfera, , sent to 
504 |a Hartmann, H., Becker, S., King, L., Predicting summer rainfall in tha Yangtse river basin with neural networks (2008) Int J Climatol, 28 (7), pp. 925-936 
504 |a Juneng, L., Tangang, F., Level and source of predictability of seasonal rainfall anomalies in Malasya usisn canonical correlation analysis (2008) Int J Climatol, 28 (9), pp. 1255-1267 
504 |a Kalnay, E., Mo, K.C., Paegle, J., Large-Amplitude, Short Scale Stationary Rossby Waves in the Southern Hemisphere: Observations and Mechanistics Experiments on determine their origin (1986) J Atmos Sci, 3, pp. 252-275 
504 |a Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Joseph, D., The NCEP/NCAR Reanalysis 40 years-project (1996) Bull Amer Meteor Soc, 77, pp. 437-471 
504 |a Mann, H.B., Non-parametric tests against trend (1945) Econometrica, 13, pp. 245-259 
504 |a Mo, K.C., Relationships between low frequency variability in the Southern Hemisphere and sea surface temperature anomalies (2000) J Climate, 13, pp. 3599-3610 
504 |a Montecinos, A., Aceituno, P., Seasonality of the ENSO related rainfall variability in Central Chile and associated circulation anomalies (2003) J Climate, 16, pp. 281-296 
504 |a Reason, C., Subtropical Indian Ocean SST dipole events and Southern Africa rainfall (2001) Geophys Res Lett, 28, pp. 2225-2227 
504 |a Purdie, J.M., Bardsley, W.E., Seasonal prediction of lake inflows and rainfall in hydroelectricity catchment, Waitaki river, New Zeland (2009) Int J Climatol, , in Press 
504 |a Rutland, J., Fuenzalida, H., Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation (1991) Int J Climatol, 11, pp. 63-76 
504 |a Schneider, C., Gies, D., Effects of El Niño-Southern Oscillation on southernmost South America precipitation al 53°S revealed from NCEP-NCAR reanalysis and weather station data (2004) Int J Climatol, 24 (9), pp. 1057-1076 
504 |a Singhrattna, N., Rajagopalan, B., Clark, M., Krishna Kumar, K., Seasonal Forecasting of Thailand summer monsoon rainfall (2005) Int J of Climatol, 25, pp. 649-664 
504 |a Wilks, D.S., (1995) Statistical methods in the atmospheric sciences (An introduction), p. 467. , International Geophysics series. Academic Press, San Diego, California, USA 
504 |a Wilks, D., Improved statistical seasonal forecast using extended training data (2008) Int J Climatol, 28 (12), pp. 1589-1598 
504 |a Zheng, X., Frederiksen, C., A study of predictable patterns for seasonal forecasting of New Zeland rainfall (2006) J Climate, 19, pp. 3320-3333 
520 3 |a Most energy resources of Argentina come from hydroelectric stations operating in the Comahue region, like "El Chocon" and "Piedra del Aguila". The Comahue region is located in the area of the Andes range, between 38°S and 43°S and two main basins are located there: the Limay River (LRB) and the Neuquen River (NRB) basins. The possibility to improve the accuracy of the seasonal precipitation forecast, is the principal objective of this chapter. LRB and NRB mean rainfall series were built in order to investigate the association between them and SST and other circulation patterns in the previous month. A regression model was elaborated for MJJ rainfall in both basins. They reflect the importance of SST in the tropical Indian Ocean, the wave train over the Pacific Ocean and the ENSO phase that are observed the month before (April), to predict MJJ rainfall.The model for ASO rainfall forecast in LRB indicates that previous SST (July) doesńt influence ASO rainfall as in the case of MJJ precipitation, but the geopotential height, related to the displacement of low pressure systems along the Pacific Ocean, plays a relevant role. This fact is indicative that the dynamical systems are the main factors that contribute to generate precipitation in the study area. Meanwhile, in the case of ASO NRB, SST is more relevant. Positive SST anomalies enhance the moisture in the atmosphere and both, moist air and deep cyclonic anomalies, reinforce the intensity of rainy systems that arrive at the Comahue region from the Pacific Ocean. The application of Climate Prediction Tool from IRI, using canonical correlation analysis showed that correlation map between observed and forecast rainfall in MJJ is significant all over the area of study and it increases towards the west and the northwest. The analogous correlation map for ASO rainfall is not so good but it seems to be efficient in the NRB with correlation decreasing towards the southwest. The results let us conclude that there are factors of predictability for rainfall in both basins, and so, more investigations must be done in order to improve the forecast. This is a relevant aspect in order to better regulate the power production derived from hydro electric sources. © 2011 Nova Science Publishers, Inc.  |l eng 
593 |a Departamento de Ciencias de la Atmósfera y los Océanos - FCEN-UBA, Argentina 
593 |a Centro de Investigaciones del Mar y la Atmósfera - CONICET/UBA, CIMA - 2 piso, Pabellón II, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina 
700 1 |a Cariaga, M.L. 
773 0 |d Nova Science Publishers, Inc., 2011  |h pp. 103-127  |p Adv. in Environ. Res. Vol. 11  |z 9781611222531  |z 9781617618963  |t Advances in Environmental Research. Volume 11 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84951953084&partnerID=40&md5=a0a4c68b50f4cae1b81aaf06f876c8c7  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_97816112_v_n_p103_Gonzalez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97816112_v_n_p103_Gonzalez  |y Registro en la Biblioteca Digital 
961 |a paper_97816112_v_n_p103_Gonzalez  |b paper  |c PE 
962 |a info:eu-repo/semantics/bookPart  |a info:ar-repo/semantics/parte de libro  |b info:eu-repo/semantics/publishedVersion 
999 |c 84706