Key questions in metastasis: New insights in molecular pathways and therapeutic implications

The metastatic cascade and colonization remains a major challenge in clinical therapeutics. The formation ofmetastasis has many rate limiting steps. The expression of metastases initiation genes in primary tumors is driven by theneed for cell motility, invasiveness, handling the shear stress in the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gueron, G.
Otros Autores: de Siervi, A., Vazquez, E.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Bentham Science Publishers B.V. 2011
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 34533caa a22024977a 4500
001 PAPER-23748
003 AR-BaUEN
005 20230607131917.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-81855216066 
024 7 |2 cas  |a chemokine receptor CXCR4, 188900-71-2; cyclophosphamide, 50-18-0; epidermal growth factor, 59459-45-9, 62229-50-9; epithelial derived neutrophil activating factor 78, 136956-40-6; etoposide, 33419-42-0, 433304-61-1; galectin 3, 208128-56-7; gelatinase B, 146480-36-6; interleukin 8, 114308-91-7; prednisone, 53-03-2; procarbazine, 366-70-1, 671-16-9; rituximab, 174722-31-7; scatter factor, 67256-21-7, 72980-71-3; thalidomide, 50-35-1; trastuzumab, 180288-69-1; uvomorulin, 112956-45-3; vasculotropin A, 489395-96-2; vasculotropin D, 193363-12-1 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CPBUB 
100 1 |a Gueron, G. 
245 1 0 |a Key questions in metastasis: New insights in molecular pathways and therapeutic implications 
260 |b Bentham Science Publishers B.V.  |c 2011 
270 1 0 |m Vazquez, E.; Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellon II, 2do Piso (1428), Buenos Aires, Argentina; email: elba@qb.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Dong, Z., Bonfil, R.D., Chinni, S., Deng, X., Trindade Filho, J.C., Bernardo, M., Vaishampayan, U., Cher, M.L., Matrix metalloproteinase activity and osteoclasts in experimental prostate cancer bone metastasis tissue (2005) Am. J. Pathol., 166 (4), pp. 1173-1186 
504 |a Gupta, G.P., Minn, A.J., Kang, Y., Siegel, P.M., Serganova, I., Cordon-Cardo, C., Olshen, A.B., Massague, J., Identifying site-specific metastasis genes and functions (2005) Cold Spring Harb. Symp. Quant. Biol., 70, pp. 149-158 
504 |a Fidler, I.J., The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited (2003) Nat. Rev. Cancer., 3 (6), pp. 453-458 
504 |a Weigelt, B., Peterse, J.L., van 't Veer, L.J., Breast cancer metastasis: Markers and models (2005) Nat. Rev. Cancer., 5 (8), pp. 591-602 
504 |a Gupta, G.P., Massague, J., Cancer metastasis: Building a framework (2006) Cell, 127 (4), pp. 679-695 
504 |a Bell, D.W., Our changing view of the genomic landscape of cancer (2010) J. Pathol., 220 (2), pp. 231-243 
504 |a Hanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100 (1), pp. 57-70 
504 |a Mantovani, A., Cancer: Inflaming metastasis (2009) Nature, 457 (7225), pp. 36-37 
504 |a Chenau, J., Michelland, S., de Fraipont, F., Josserand, V., Coll, J.L., Favrot, M.C., Seve, M., The cell line secretome, a suitable tool for investigating proteins released in vivo by tumors: Application to the study of p53-modulated proteins secreted in lung cancer cells (2009) J. Proteome. Res., 8 (10), pp. 4579-4591 
504 |a Mehrotra, S., Languino, L.R., Raskett, C.M., Mercurio, A.M., Dohi, T., Altieri, D.C., IAP regulation of metastasis (2010) Cancer Cell, 17 (1), pp. 53-64 
504 |a Spano, D., Russo, R., Di Maso, V., Rosso, N., Terracciano, L.M., Roncalli, M., Tornillo, L., Iolascon, A., Galectin-1 and its involvement in hepatocellular carcinoma aggressiveness (2010) Mol. Med., 16 (3-4), pp. 102-115 
504 |a Schultz, J., Koczan, D., Schmitz, U., Ibrahim, S.M., Pilch, D., Landsberg, J., Kunz, M., Tumor-promoting role of signal transducer and activator of transcription (Stat)1 in late-stage melanoma growth (2010) Clin. Exp. Metastasis., 27 (3), pp. 133-140 
504 |a Matsuyama, T., Ishikawa, T., Mogushi, K., Yoshida, T., Iida, S., Uetake, H., Mizushima, H., Sugihara, K., MUC12 mRNA expression is an independent marker of prognosis in stage II and stage III colorectal cancer (2010) Int. J. Cancer., 127 (10), pp. 2292-2299 
504 |a Hao, J.M., Chen, J.Z., Sui, H.M., Si-Ma, X.Q., Li, G.Q., Liu, C., Li, J.L., Li, J.M., A five-gene signature as a potential predictor of metastasis and survival in colorectal cancer (2010) J. Pathol., 220 (4), pp. 475-489 
504 |a Muller, T., Stein, U., Poletti, A., Garzia, L., Rothley, M., Plaumann, D., Thiele, W., Sleeman, J.P., ASAP1 promotes tumor cell motility and invasiveness, stimulates metastasis formation in vivo, and correlates with poor survival in colorectal cancer patients (2010) Oncogene, 29 (16), pp. 2393-2403 
504 |a Hong, Y., Downey, T., Eu, K.W., Koh, P.K., Cheah, P.Y., A 'metastasis-prone' signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics (2010) Clin. Exp. Metastasis., 27 (2), pp. 83-90 
504 |a Logothetis, C.J., Lin, S.H., Osteoblasts in prostate cancer metastasis to bone (2005) Nat. Rev. Cancer., 5 (1), pp. 21-28 
504 |a Li, Z.G., Yang, J., Vazquez, E.S., Rose, D., Vakar-Lopez, F., Mathew, P., Lopez, A., Navone, N.M., Low-density lipoprotein receptor-related protein 5 (LRP5) mediates the prostate cancer-induced formation of new bone (2008) Oncogene, 27 (5), pp. 596-603 
504 |a Chambers, A.F., Groom, A.C., Macdonald, I.C., Dissemination and growth of cancer cells in metastatic sites (2002) Nat. Rev. Cancer., 2 (8), pp. 563-572 
504 |a Dittmar, T., Heyder, C., Gloria-Maercker, E., Hatzmann, W., Zanker, K.S., Adhesion molecules and chemokines: The navigation system for circulating tumor (stem) cells to metastasize in an organ- specific manner (2008) Clin. Exp. Metastasis., 25 (1), pp. 11-32 
504 |a Qiu, H., Orr, F.W., Jensen, D., Wang, H.H., McIntosh, A.R., Hasinoff, B.B., Nance, D.M., Al-Mehdi, A.B., Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells (2003) Am. J. Pathol., 162 (2), pp. 403-412 
504 |a Hall, K., Ran, S., Regulation of tumor angiogenesis by the local environment (2010) Front. Biosci., 15, pp. 195-212 
504 |a Vicari, A.P., Caux, C., Chemokines in cancer (2002) Cytokine Growth Factor Rev, 13 (2), pp. 143-154 
504 |a Pratap, J., Javed, A., Languino, L.R., van Wijnen, A.J., Stein, J.L., Stein, G.S., Lian, J.B., The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion (2005) Mol. Cell Biol., 25 (19), pp. 8581-8591 
504 |a de Marzo, A.M., Platz, E.A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C.G., Nakai, Y., Nelson, W.G., Inflammation in prostate carcinogenesis (2007) Nat. Rev. Cancer., 7 (4), pp. 256-269 
504 |a Gueron, G., de Siervi, A., Ferrando, M., Salierno, M., de Luca, P., Elguero, B., Meiss, R., Vazquez, E.S., Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells (2009) Mol. Cancer Res., 7 (11), pp. 1745-1755 
504 |a Jozkowicz, A., Was, H., Dulak, J., Heme oxygenase-1 in tumors: Is it a false friend? (2007) Antioxid Redox Signal, 9 (12), pp. 2099-2117 
504 |a Ran, S., Volk, L., Hall, K., Flister, M.J., Lymphangiogenesis and lymphatic metastasis in breast cancer (2009) Pathophysiology, 7 (4), pp. 229-251 
504 |a Liu, Y., Ji, R., Li, J., Gu, Q., Zhao, X., Sun, T., Wang, J., Sun, B., Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis (2010) J. Exp. Clin. Cancer Res., 29 (1), p. 16 
504 |a Zlotnik, A., Chemokines in neoplastic progression (2004) Semin. Cancer Biol., 14 (3), pp. 181-185 
504 |a Zhang, S., Qi, L., Li, M., Zhang, D., Xu, S., Wang, N., Sun, B., Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer (2008) J. Exp. Clin. Cancer Res., 27, p. 62 
504 |a Saigusa, S., Toiyama, Y., Tanaka, K., Yokoe, T., Okugawa, Y., Kawamoto, A., Yasuda, H., Kusunoki, M., Stromal CXCR4 and CXCL12 expression is associated with distant recurrence and poor prognosis in rectal cancer after chemoradiotherapy (2010) Ann. Surg. Oncol., 17 (8), pp. 2051-2058 
504 |a Lazennec, G., Richmond, A., Chemokines and chemokine receptors: New insights into cancer-related inflammation (2010) Trends Mol. Med., 16 (3), pp. 133-144 
504 |a Zabuawala, T., Taffany, D.A., Sharma, S.M., Merchant, A., Adair, B., Srinivasan, R., Rosol, T.J., Ostrowski, M.C., An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis (2010) Cancer Res, 70 (4), pp. 1323-1333 
504 |a Utispan, K., Thuwajit, P., Abiko, Y., Charngkaew, K., Paupairoj, A., Chau-In, S., Thuwajit, C., Gene expression profiling of cholangiocarcinoma- derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker (2010) Mol. Cancer., 9, p. 13 
504 |a McConkey, D.J., Choi, W., Marquis, L., Martin, F., Williams, M.B., Shah, J., Svatek, R., Dinney, C., Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer (2009) Cancer Metastasis Rev, 28 (3-4), pp. 335-344 
504 |a Acloque, H., Thiery, J.P., Nieto, M.A., The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition (2008) EMBO Rep, 9 (4), pp. 322-326 
504 |a Kalluri, R., Weinberg, R.A., The basics of epithelial-mesenchymal transition (2009) J. Clin. Invest, 119 (6), pp. 1420-1428 
504 |a Hader, C., Marlier, A., Cantley, L., Mesenchymal-epithelial transition in epithelial response to injury: The role of Foxc2 (2010) Oncogene, 29 (7), pp. 1031-1040 
504 |a Kang, Y., Massague, J., Epithelial-mesenchymal transitions: Twist in development and metastasis (2004) Cell, 118 (3), pp. 277-279 
504 |a Jaggi, M., Johansson, S.L., Baker, J.J., Smith, L.M., Galich, A., Balaji, K.C., Aberrant expression of E-cadherin and beta-catenin in human prostate cancer (2005) Urol. Oncol., 23 (6), pp. 402-406 
504 |a Gravdal, K., Halvorsen, O.J., Haukaas, S.A., Akslen, L.A., A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer (2007) Clin. Cancer Res., 13 (23), pp. 7003-7011 
504 |a Xie, D., Gore, C., Liu, J., Pong, R.C., Mason, R., Hao, G., Long, M., Hsieh, J.T., Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis (2010) Proc. Natl. Acad. Sci. USA., 107 (6), pp. 2485-2490 
504 |a Gjerdrum, C., Tiron, C., Hoiby, T., Stefansson, I., Haugen, H., Sandal, T., Collett, K., Lorens, J.B., Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival (2010) Proc. Natl. Acad. Sci. USA., 107 (3), pp. 1124-1129 
504 |a Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., Baba, H., Mori, M., Epithelial-mesenchymal transition in cancer development and its clinical significance (2010) Cancer Sci, 101 (2), pp. 293-299 
504 |a McCoy, E.L., Iwanaga, R., Jedlicka, P., Abbey, N.S., Chodosh, L.A., Heichman, K.A., Welm, A.L., Ford, H.L., Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition (2009) J. Clin. Invest., 119 (9), pp. 2663-2677 
504 |a Micalizzi, D.S., Christensen, K.L., Jedlicka, P., Coletta, R.D., Baron, A.E., Harrell, J.C., Horwitz, K.B., Ford, H.L., The Six1 homeoprotein induces human mammary carcinoma cells to undergo epithelial-mesenchymal transition and metastasis in mice through increasing TGF-beta signaling (2009) J. Clin. Invest., 119 (9), pp. 2678-2690 
504 |a Choi, Y.L., Bocanegra, M., Kwon, M.J., Shin, Y.K., Nam, S.J., Yang, J.H., Kao, J., Pollack, J.R., LYN Is a Mediator of epithelial-mesenchymal transition and a target of dasatinib in breast cancer (2010) Cancer Res, 70 (6), pp. 2296-2306 
504 |a Yan, W., Cao, Q.J., Arenas, R.B., Bentley, B., Shao, R., GATA3 inhibits breast cancer metastasis through the reversal of epithelialmesenchymal transition (2010) J. Biol. Chem., 285 (18), pp. 14042-14051 
504 |a Jung, H., Lee, K.P., Park, S.J., Park, J.H., Jang, Y.S., Choi, S.Y., Jung, J.G., Park, Y.W., TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition (2008) Oncogene, 27 (18), pp. 2635-2647 
504 |a Tang, D.J., Dong, S.S., Ma, N.F., Xie, D., Chen, L., Fu, L., Lau, S.H., Guan, X.Y., Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma (2009) Hepatology, 51 (4), pp. 1255-1263 
504 |a Yang, M.H., Chen, C.L., Chau, G.Y., Chiou, S.H., Su, C.W., Chou, T.Y., Peng, W.L., Wu, J.C., Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma (2009) Hepatology, 50 (5), pp. 1464-1474 
504 |a Lenferink, A.E., Cantin, C., Nantel, A., Wang, E., Durocher, Y., Banville, M., Paul-Roc, B., O'connor-McCourt, M.D., Transcriptome profiling of a TGF-beta-induced epithelial-to-mesenchymal transition reveals extracellular clusterin as a target for therapeutic antibodies (2010) Oncogene, 29 (6), pp. 831-844 
504 |a Zhu, M.L., Kyprianou, N., Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells (2010) FASEB J, 24 (3), pp. 769-777 
504 |a Harris, A.L., Hypoxia--a key regulatory factor in tumour growth (2002) Nat. Rev. Cancer., 2 (1), pp. 38-47 
504 |a Bertout, J.A., Patel, S.A., Simon, M.C., The impact of O2 availability on human cancer (2008) Nat. Rev. Cancer., 8 (12), pp. 967-975 
504 |a Yang, M.H., Wu, K.J., TWIST activation by hypoxia inducible factor-1 (HIF-1): Implications in metastasis and development (2008) Cell Cycle, 7 (14), pp. 2090-2096 
504 |a Huang, C.H., Yang, W.H., Chang, S.Y., Tai, S.K., Tzeng, C.H., Kao, J.Y., Wu, K.J., Yang, M.H., Regulation of membrane-type 4 matrix metalloproteinase by SLUG contributes to hypoxiamediated metastasis (2009) Neoplasia, 11 (12), pp. 1371-1382 
504 |a Lundgren, K., Nordenskjold, B., Landberg, G., Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer (2009) Br. J. Cancer., 101 (10), pp. 1769-1781 
504 |a Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M., Pe'er, J., Trent, J.M., Hendrix, M.J., Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry (1999) Am. J. Pathol., 155 (3), pp. 739-752 
504 |a Folberg, R., Hendrix, M.J., Maniotis, A.J., Vasculogenic mimicry and tumor angiogenesis (2000) Am. J. Pathol., 156 (2), pp. 361-381 
504 |a Sharma, N., Seftor, R.E., Seftor, E.A., Gruman, L.M., Heidger Jr., P.M., Cohen, M.B., Lubaroff, D.M., Hendrix, M.J., Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: Role in vasculogenic mimicry (2002) Prostate, 50 (3), pp. 189-201 
504 |a Shirakawa, K., Kobayashi, H., Heike, Y., Kawamoto, S., Brechbiel, M.W., Kasumi, F., Iwanaga, T., Wakasugi, H., Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenograft (2002) Cancer Res, 62 (2), pp. 560-566 
504 |a Sood, A.K., Seftor, E.A., Fletcher, M.S., Gardner, L.M., Heidger, P.M., Buller, R.E., Seftor, R.E., Hendrix, M.J., Molecular determinants of ovarian cancer plasticity (2001) Am. J. Pathol., 158 (4), pp. 1279-1288 
504 |a Sun, B., Qie, S., Zhang, S., Sun, T., Zhao, X., Gao, S., Ni, C., Zhang, L., Role and mechanism of vasculogenic mimicry in gastrointestinal stromal tumors (2008) Hum. Pathol., 39 (3), pp. 444-451 
504 |a Li, M., Gu, Y., Zhang, Z., Zhang, S., Zhang, D., Saleem, A.F., Zhao, X., Sun, B., Vasculogenic mimicry: A new prognostic sign of gastric adenocarcinoma (2009) Pathol. Oncol. Res., 16 (2), pp. 259-266 
504 |a Sun, T., Zhao, N., Zhao, X.L., Gu, Q., Zhang, S.W., Che, N., Wang, X.H., Sun, B.C., Expression and functional significance of Twist1 in hepatocellular carcinoma: Its role in vasculogenic mimicry (2010) Hepatology, 51 (2), pp. 545-556 
504 |a Zhao, X.L., Sun, T., Che, N., Sun, D., Zhao, N., Dong, X.Y., Gu, Q., Sun, B.C., Promotion of hepatocellular carcinoma metastasis through matrix metalloproteinase activation by epithelialmesenchymal transition regulator twist1 (2010) J. Cell Mol. Med., , Epub ahead of print 
504 |a Mourad-Zeidan, A.A., Melnikova, V.O., Wang, H., Raz, A., Bar-Eli, M., Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry (2008) Am. J. Pathol., 173 (6), pp. 1839-1852 
504 |a Hart, I.R., New evidence for tumour embolism as a mode of metastasis (2009) J. Pathol., 219 (3), pp. 275-276 
504 |a Kats-Ugurlu, G., Roodink, I., de Weijert, M., Tiemessen, D., Maass, C., Verrijp, K., van der Laak, J., Leenders, W., Circulating tumour tissue fragments in patients with pulmonary metastasis of clear cell renal cell carcinoma (2009) J. Pathol., 219 (3), pp. 287-293 
504 |a Reddy, S.D., Gajula, R.P., Pakala, S.B., Kumar, R., MicroRNAs and cancer therapy: The next wave or here to stay? (2010) Cancer Biol. Ther., 9 (7), pp. 479-482 
504 |a Cho, W.C., MicroRNAs: Potential biomarkers for cancer diagnosis, prognosis and targets for therapy (2009) Int. J. Biochem. Cell Biol., 42 (8), pp. 1273-1281 
504 |a Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Croce, C.M., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers (2004) Proc. Natl. Acad. Sci. USA., 101 (9), pp. 2999-3004 
504 |a Zhang, H., Li, Y., Lai, M., The microRNA network and tumor metastasis (2010) Oncogene, 29 (7), pp. 937-948 
504 |a Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., Teruya-Feldstein, J., Weinberg, R.A., miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis (2010) Nat. Cell Biol., 12 (3), pp. 247-256 
504 |a Guo, J., Dong, Q., Fang, Z., Chen, X., Lu, H., Wang, K., Yin, Y., Zhang, C.Y., Identification of miRNAs that are associated with tumor metastasis in neuroblastoma (2010) Cancer Biol. Ther., 9 (6), pp. 446-452 
504 |a Kitago, M., Martinez, S.R., Nakamura, T., Sim, M.S., Hoon, D.S., Regulation of RUNX3 tumor suppressor gene expression in cutaneous melanoma (2009) Clin. Cancer Res., 15 (9), pp. 2988-2994 
504 |a Friedman, J.M., Liang, G., Liu, C.C., Wolff, E.M., Tsai, Y.C., Ye, W., Zhou, X., Jones, P.A., The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2 (2009) Cancer Res, 69 (6), pp. 2623-2629 
504 |a Li, S., Fu, H., Wang, Y., Tie, Y., Xing, R., Zhu, J., Sun, Z., Zheng, X., MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma (2009) Hepatology, 49 (4), pp. 1194-1202 
504 |a Reddy, S.D., Pakala, S.B., Ohshiro, K., Rayala, S.K., Kumar, R., MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions (2009) Cancer Res, 69 (14), pp. 5639-5642 
504 |a Hurst, D.R., Edmonds, M.D., Scott, G.K., Benz, C.C., Vaidya, K.S., Welch, D.R., Breast cancer metastasis suppressor 1 upregulates miR-146, which suppresses breast cancer metastasis (2009) Cancer Res, 69 (4), pp. 1279-1283 
504 |a Tsai, W.C., Hsu, P.W., Lai, T.C., Chau, G.Y., Lin, C.W., Chen, C.M., Lin, C.D., Tsou, A.P., MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma (2009) Hepatology, 49 (5), pp. 1571-1582 
504 |a Zbytek, B., Carlson, J.A., Granese, J., Ross, J., Mihm, M.C., Slominski, A., Current concepts of metastasis in melanoma (2008) Exp. Rev. Dermatol., 3 (5), pp. 569-585 
504 |a Mahmoud, W., Sukhanova, A., Oleinikov, V., Rakovich, Y.P., Donegan, J.F., Pluot, M., Cohen, J.H., Nabiev, I., Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection (2010) Proteomics, 10 (4), pp. 700-716 
504 |a Gonda, K., Watanabe, T.M., Ohuchi, N., Higuchi, H., In vivo nanoimaging of membrane dynamics in metastatic tumor cells using quantum dots (2010) J. Biol. Chem., 285 (4), pp. 2750-2757 
504 |a Yang, K., Li, Z., Cao, Y., Yu, X., Mei, J., Effect of peptideconjugated near-infrared fluorescent quantum dots (NIRF-QDs) on the invasion and metastasis of human tongue squamous cell carcinoma cell line Tca8113 in Vitro (2009) Int. J. Mol. Sci., 10 (10), pp. 4418-4427 
504 |a Kobayashi, H., Ogawa, M., Kosaka, N., Choyke, P.L., Urano, Y., Multicolor imaging of lymphatic function with two nanomaterials: Quantum dot-labeled cancer cells and dendrimer-based optical agents (2009) Nanomedicine (Lond), 4 (4), pp. 411-419 
504 |a Zhang, H., Zeng, X., Li, Q., Gaillard-Kelly, M., Wagner, C.R., Yee, D., Fluorescent tumour imaging of type I IGF receptor in vivo: Comparison of ntibody-conjugated quantum dots and smallmolecule fluorophore (2009) Br. J. Cancer., 101 (1), pp. 71-79 
504 |a Choi, J., Burns, A.A., Williams, R.M., Zhou, Z., Flesken-Nikitin, A., Zipfel, W.R., Wiesner, U., Nikitin, A.Y., Core-shell silica nanoparticles as fluorescent labels for nanomedicine (2007) J. Biomed. Opt., 12 (6). , 064007 
504 |a Derfus, A.M., Chen, A.A., Min, D.H., Ruoslahti, E., Bhatia, S.N., Targeted quantum dot conjugates for siRNA delivery (2007) Bioconjug. Chem., 18 (5), pp. 1391-1396 
504 |a Gao, X., Chung, L.W., Nie, S., Quantum dots for in vivo molecular and cellular imaging (2007) Methods Mol. Biol., 374, pp. 135-145 
504 |a Rhodes, D.R., Chinnaiyan, A.M., Integrative analysis of the cancer transcriptome (2005) Nat. Genet., 37 (SUPPL.), pp. 31-37 
504 |a Dutertre, M., Lacroix-Triki, M., Driouch, K., de la Grange, P., Gratadou, L., Beck, S., Millevoi, S., Auboeuf, D., Exon-based clustering of murine breast tumor transcriptomes reveals alternative exons whose expression is associated with metastasis (2010) Cancer Res, 70 (3), pp. 896-905 
504 |a Rickman, D.S., Millon, R., de Reynies, A., Thomas, E., Wasylyk, C., Muller, D., Abecassis, J., Wasylyk, B., Prediction of future metastasis and molecular characterization of head and neck squamouscell carcinoma based on transcriptome and genome analysis by microarrays (2008) Oncogene, 27 (51), pp. 6607-6622 
504 |a Pascal, L.E., Vencio, R.Z., Page, L.S., Liebeskind, E.S., Shadle, C.P., Troisch, P., Marzolf, B., Liu, A.Y., Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes (2009) BMC Cancer, 9, p. 452 
504 |a Bafico, A., Liu, G., Goldin, L., Harris, V., Aaronson, S.A., An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells (2004) Cancer Cell, 6 (5), pp. 497-506 
504 |a Tahara, T., Shibata, T., Arisawa, T., Nakamura, M., Yamashita, H., Yoshioka, D., Okubo, M., Hirata, I., CpG island promoter methylation (CIHM) status of tumor suppressor genes correlates with morphological appearances of gastric cancer (2010) Anticancer Res, 30 (1), pp. 239-244 
504 |a la Merrill, M., Gordon, R.R., Hunter, K.W., Threadgill, D.W., Pomp, D., Dietary fat alters pulmonary metastasis of mammary cancers through cancer autonomous and non-autonomous changes in gene expression (2010) Clin. Exp. Metastasis., 27 (2), pp. 107-116 
504 |a Bojovic, B., Crowe, D.L., Chronologic aging decreases tumor angiogenesis and metastasis in a mouse model of head and neck cancer (2010) Int. J. Oncol., 36 (3), pp. 715-723 
504 |a Hsu, P.P., Sabatini, D.M., Cancer cell metabolism: Warburg and beyond (2008) Cell, 134 (5), pp. 703-707 
504 |a Declerck, K., Elble, R.C., The role of hypoxia and acidosis in promoting metastasis and resistance to chemotherapy (2010) Front Biosci, 15, pp. 213-225 
504 |a Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.J., Cancer statistics, 2009 (2009) CA Cancer J. Clin., 59 (4), pp. 225-249 
504 |a Vogiatzi, P., Cassone, M., Claudio, L., Claudio, P.P., Targeted therapy for advanced prostate cancer: Looking through new lenses (2009) Drug News Perspect, 22 (10), pp. 593-601 
504 |a Li, Z.G., Mathew, P., Yang, J., Starbuck, M.W., Zurita, A.J., Liu, J., Sikes, C., Navone, N.M., Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms (2008) J. Clin. Invest., 118 (8), pp. 2697-2710 
504 |a Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S.K., Reczek, E.E., de Raedt, T., Guney, I., Cichowski, K., An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB Nat. Med., 16 (3), pp. 286-294 
504 |a Simon, J.A., Lange, C.A., Roles of the EZH2 histone methyltransferase in cancer epigenetics (2008) Mutat. Res., 647 (1-2), pp. 21-29 
504 |a Reijm, E.A., Jansen, M.P., Ruigrok-Ritstier, K., van Staveren, I.L., Look, M.P., van Gelder, M.E., Sieuwerts, A.M., Berns, E.M., Decreased expression of EZH2 is associated with upregulation of ER and favorable outcome to tamoxifen in advanced breast cancer (2010) Breast Cancer Res. Treat., , Epub ahead of print 
504 |a Lewis Phillips, G.D., Li, G., Dugger, D.L., Crocker, L.M., Parsons, K.L., Mai, E., Blattler, W.A., Sliwkowski, M.X., Targeting HER2-positive breast cancer with trastuzumab-DM1, an ntibody-cytotoxic drug conjugate (2008) Cancer Res, 68 (22), pp. 9280-9290 
504 |a Zhang, G., Zhang, H., Wang, Q., Lal, P., Carroll, A.M., de la Llera-Moya, M., Xu, X., Greene, M.I., Suppression of human prostate tumor growth by a unique prostate-specific monoclonal antibody F77 targeting a glycolipid marker (2010) Proc. Natl. Acad. Sci. USA., 107 (2), pp. 732-737 
504 |a Oussedik, K., Francois, J.C., Halby, L., Senamaud-Beaufort, C., Toutirais, G., Dallavalle, S., Pommier, Y., Arimondo, P.B., Sequence specific targeting of IGF-I and IGF-IR genes by camptothecins (2010) FASEB J, 24 (7), pp. 2235-2244 
504 |a Kim, S.Y., Helman, L.J., Strategies to explore new approaches in the investigation and treatment of osteosarcoma (2010) Cancer Treat. Res., 152, pp. 517-528 
504 |a Aizawa, J., Sakayama, K., Kamei, S., Kidani, T., Yamamoto, H., Norimatsu, Y., Masuno, H., Effect of troglitazone on tumor growth and pulmonary metastasis development of the mouse osteosarcoma cell line LM8 (2010) BMC Cancer, 10, p. 51 
504 |a Arora, A., Scholar, E.M., Role of tyrosine kinase inhibitors in cancer therapy (2005) J. Pharmacol. Exp. Ther., 315 (3), pp. 971-979 
504 |a Merlos-Suarez, A., Batlle, E., Eph-ephrin signalling in adult tissues and cancer (2008) Curr. Opin. Cell Biol., 20 (2), pp. 194-200 
504 |a Ruan, J., Martin, P., Coleman, M., Furman, R.R., Cheung, K., Faye, A., Elstrom, R., Leonard, J.P., Durable responses with the metronomic rituximab and thalidomide plus prednisone, etoposide, procarbazine, and cyclophosphamide regimen in elderly patients with recurrent mantle cell lymphoma (2010) Cancer, 116 (11), pp. 2655-2664 
504 |a Sharom, F.J., ABC multidrug transporters: Structure, function and role in chemoresistance (2008) Pharmacogenomics, 9 (1), pp. 105-127 
504 |a Lee, C.H., Reversing agents for ATP-binding cassette drug transporters (2010) Methods Mol. Biol., 596, pp. 325-340 
504 |a Li, C., Chen, S., Yue, P., Deng, X., Lonial, S., Khuri, F.R., Sun, S.Y., The proteasome inhibitor PS-341 (Bortezomib) induces calpain-dependent I{kappa}B{alpha} degradation (2010) J. Biol. Chem., 285 (21), pp. 16096-16104 
504 |a Peacock, C.D., Wang, Q., Gesell, G.S., Corcoran-Schwartz, I.M., Jones, E., Kim, J., Devereux, W.L., Matsui, W., Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma (2007) Proc. Natl. Acad. Sci. USA., 104 (10), pp. 4048-4053 
504 |a Robarge, K.D., Brunton, S.A., Castanedo, G.M., Cui, Y., Dina, M.S., Goldsmith, R., Gould, S.E., Xie, M., GDC-0449-a potent inhibitor of the hedgehog pathway (2009) Bioorg. Med. Chem. Lett., 19 (19), pp. 5576-5581 
504 |a Peukert, S., Miller-Moslin, K., Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics (2010) Chem. Med. Chem., 5 (4), pp. 500-512 
504 |a Ladoire, S., Arnould, L., Mignot, G., Coudert, B., Rebe, C., Chalmin, F., Vincent, J., Ghiringhelli, Presence of Foxp3 expression in tumor cells predicts better survival in HER2-overexpressing breast cancer patients treated with neoadjuvant chemotherapy (2010) Breast Cancer Res. Treat., 125 (1), pp. 65-72 
504 |a Levine, M.N., New antithrombotic drugs: Potential for use in oncology (2009) J. Clin. Oncol., 27 (29), pp. 4912-4918 
504 |a Green, D., Karpatkin, S., Role of thrombin as a tumor growth factor (2010) Cell Cycle, 9 (4), pp. 656-661 
504 |a Wasylyk, C., Zambrano, A., Zhao, C., Brants, J., Abecassis, J., Schalken, J.A., Rogatsch, H., Wasylyk, B., ubulin tyrosine ligase like 12, link to prostate cancer through tubulin post-translational modification and chromosome ploidy (2010) Int. J. Cancer., 127 (11), pp. 2542-2553 
504 |a Dong, X., Guan, J., English, J.C., Flint, J., Yee, J., Evans, K., Murray, N., Wang, Y., Patient-derived first generation xenografts of non-small cell lung cancers: Promising tools for predicting drug responses for personalized chemotherapy (2010) Clin. Cancer Res., 16 (5), pp. 1442-1451 
520 3 |a The metastatic cascade and colonization remains a major challenge in clinical therapeutics. The formation ofmetastasis has many rate limiting steps. The expression of metastases initiation genes in primary tumors is driven by theneed for cell motility, invasiveness, handling the shear stress in the vasculature and lymphatic circulation, and the survivaland persistent growth in the distant organ. However, the expression of the progression genes in the primary tumors has amore complex basis. These metastasis-prone genes support primary tumor growth through one particular effect, whereasthey enhance distant metastasis through another effect. The boundaries between metastasis initiation and metastasis progressiongenes are not rigid. In this review, we examine novel gene signatures identified in metastases, address key inflammatoryfactors mastering homing selection, gain further mechanistic insights into cell plasticity and evaluate the roleof microRNAs. Moreover, we also describe the recent progress in developing nanoparticle imaging substantiating a promisingtheranostic platform for future cancer diagnostics and treatment, and assess the relevance of the bioinformatic analysisof metastasis-related proteins with an eye toward the metastatic niche. All these tools will provide valuable biologicalinformation of the progression of the disease, helping find potential therapeutic targets and improving surgical procedures.In a near future the understanding of the molecular mechanisms in tumor dissemination will be pivotal for the translationof these methods to the clinic and will help to overcome the barriers in clinical therapy of metastases. © 2011 Bentham Science Publishers.  |l eng 
593 |a Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Ciudad Universitaria, Pabellon II, 2do Piso (1428), Buenos Aires, Argentina 
690 1 0 |a EPITHELIAL-MESENCHYMAL-TRANSITION 
690 1 0 |a GENE-SIGNATURE 
690 1 0 |a INFLAMMATION 
690 1 0 |a METASTASIS 
690 1 0 |a MICRORNA 
690 1 0 |a THERAPY 
690 1 0 |a VASCULAR MIMICRY 
690 1 0 |a ANTINEOPLASTIC AGENT 
690 1 0 |a BETA CATENIN 
690 1 0 |a CHEMOKINE RECEPTOR CXCR4 
690 1 0 |a CYCLOPHOSPHAMIDE 
690 1 0 |a CYTOKINE 
690 1 0 |a EPIDERMAL GROWTH FACTOR 
690 1 0 |a EPITHELIAL DERIVED NEUTROPHIL ACTIVATING FACTOR 78 
690 1 0 |a ETOPOSIDE 
690 1 0 |a GALECTIN 3 
690 1 0 |a GELATINASE B 
690 1 0 |a INTERLEUKIN 6 
690 1 0 |a INTERLEUKIN 8 
690 1 0 |a MICRORNA 
690 1 0 |a MONOCLONAL ANTIBODY 
690 1 0 |a NANOPARTICLE 
690 1 0 |a PLATELET DERIVED GROWTH FACTOR 
690 1 0 |a PREDNISONE 
690 1 0 |a PROCARBAZINE 
690 1 0 |a PROTEIN P53 
690 1 0 |a PROTEIN TYROSINE KINASE INHIBITOR 
690 1 0 |a RITUXIMAB 
690 1 0 |a SCATTER FACTOR 
690 1 0 |a STAT1 PROTEIN 
690 1 0 |a THALIDOMIDE 
690 1 0 |a TRANSFORMING GROWTH FACTOR BETA 
690 1 0 |a TRASTUZUMAB 
690 1 0 |a UVOMORULIN 
690 1 0 |a VASCULOTROPIN A 
690 1 0 |a VASCULOTROPIN D 
690 1 0 |a VASCULOTROPIN RECEPTOR 3 
690 1 0 |a ANAEROBIC GLYCOLYSIS 
690 1 0 |a ANGIOGENESIS 
690 1 0 |a BONE METASTASIS 
690 1 0 |a BREAST CANCER 
690 1 0 |a CANCER GROWTH 
690 1 0 |a CELL HOMING 
690 1 0 |a COLORECTAL CANCER 
690 1 0 |a EPITHELIAL MESENCHYMAL TRANSITION 
690 1 0 |a GENE EXPRESSION 
690 1 0 |a HUMAN 
690 1 0 |a MANTLE CELL LYMPHOMA 
690 1 0 |a METASTASIS 
690 1 0 |a NONHUMAN 
690 1 0 |a RECURRENT CANCER 
690 1 0 |a REVIEW 
690 1 0 |a TUMOR MICROENVIRONMENT 
653 0 0 |a herceptin 
700 1 |a de Siervi, A. 
700 1 |a Vazquez, E. 
773 0 |d Bentham Science Publishers B.V., 2011  |g v. 12  |h pp. 1867-1880  |k n. 11  |p Curr. Pharm. Biotechnol.  |x 13892010  |t Current Pharmaceutical Biotechnology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-81855216066&doi=10.2174%2f138920111798376996&partnerID=40&md5=a36ce01823f584913e3eb1462db9ffbd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.2174/138920111798376996  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13892010_v12_n11_p1867_Gueron  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13892010_v12_n11_p1867_Gueron  |y Registro en la Biblioteca Digital 
961 |a paper_13892010_v12_n11_p1867_Gueron  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84701