An optical nanoantenna made of plasmonic chain resonators

We propose a novel structure that behaves like an optical antenna and converts evanescent waves into propagating waves. The system comprises metallic subwavelength cylinders distributed in a dual-period array. It is illuminated by an evanescent wave generated by total internal reflection in a close...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lester, Marcelo Fabián
Otros Autores: Skigin, D.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
Descripción
Sumario:We propose a novel structure that behaves like an optical antenna and converts evanescent waves into propagating waves. The system comprises metallic subwavelength cylinders distributed in a dual-period array. It is illuminated by an evanescent wave generated by total internal reflection in a close interface. For particular wavelengths, the system exhibits resonances and the inhomogeneous wave is converted into propagating waves that radiate to the far field. This effect can be controlled by varying the geometrical parameters of the structure, such as the period and the inclination angle. Therefore, the transmitted intensity can be sent to a predesigned direction. This structure could be used in highly sensitive detection devices, among other applications. © 2011 IOP Publishing Ltd.
Bibliografía:Greffet, J.-J., Nanoantennas for light emission (2005) Science, 308 (5728), pp. 1561-1563. , DOI 10.1126/science.1113355
Pakizeh, T., Kall, M., Unidirectional ultracompact optical nanoantennas (2009) Nano Lett., 9 (6), pp. 2343-2349
Novotny, L., Nano-optics: Optical antennas tuned to pitch (2008) Nature, 455 (7215), p. 887
Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., Optical antennas direct single-molecule emission (2008) Nat. Photon., 2 (4), pp. 234-237
Novotny, L., Hecht, B., (2006) Principles of Nano-Optics
Girard, Ch., Joachim, Ch., Gauthier, S., The physics of the near-field (2000) Rep. Prog. Phys., 63 (6), pp. 893-938
Girard, Ch., Near fields in nanostructures (2005) Rep. Prog. Phys., 68 (8), pp. 1883-1933
Salerno, M., Krenn, J.R., Hohenau, A., Ditlbacher, H., Schider, G., Leitner, A., Aussenegg, F.R., The optical near-field of gold nanoparticle chains (2005) Optics Communications, 248 (4-6), pp. 543-549. , DOI 10.1016/j.optcom.2004.12.023, PII S0030401804012994
Righini, M., Girard, C., Quidant, R., Light-induced manipulation with surface plasmons (2008) J. Opt. A: Pure Appl. Opt., 10 (9), p. 093001
Quidant, R., Weeber, J.-C., Dereux, A., Peyrade, D., Chen, Y., Girard, C., Near-field observation of evanescent light wave coupling in subwavelength optical waveguides (2002) Europhys. Lett., 57 (2), p. 191
Des Francs, G.C., Girard, C., Weeber, J.-C., Chicane, C., David, T., Dereux, A., Peyrade, D., Optical analogy to electronic quantum corrals (2001) Physical Review Letters, 86 (21), pp. 4950-4953. , DOI 10.1103/PhysRevLett.86.4950
Zhang, Z., Du, J., Guo, X., Luo, X., Du, C., High-efficiency transmission of nanoscale information by surface plasmon polaritons from near field to far field (2007) J. Appl. Phys., 102 (7), p. 074301
Lester, M., Nieto-Vesperinas, M., Optical forces on microparticles in an evanescent laser field (1999) Optics Letters, 24 (14), pp. 936-938
Lester, M., Arias-Gonzalez, J.R., Nieto-Vesperinas, M., Fundamentals and model of photonic-force microscopy (2001) Optics Letters, 26 (10), pp. 707-709
Mulin, D., Girard, C., Colas Des Francs, G., Spajer, M., Courjon, D., Near-field optical probing of two-dimensional photonic crystals: Theory and experiment (2000) J. Microsc., 202 (1), pp. 110-116
Fang, N., Lee, H., Sun, C., Zhang, X., Sub-diffraction-limited optical imaging with a silver superlens (2005) Science, 308 (5721), pp. 534-537. , DOI 10.1126/science.1108759
Tetz, K.A., Rokitski, R., Nezhad, M., Fainman, Y., Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating (2005) Appl. Phys. Lett., 86 (11), p. 111110
Dintinger, J., Klein, S., Bustos, F., Barnes, W.L., Ebbesen, T.W., Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays (2005) Phys. Rev., 71 (3), p. 035424
Byun, K.M., Kim, S.J., Kim, D., Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis (2005) Optics Express, 13 (10), pp. 3737-3742. , http://www.opticsexpress.org/view_file.cfm?doc= %24%29L%2F%28I%40%20%20%0A&id=%25%28%2C%3F%27J%3C%3C%20%0A, DOI 10.1364/OPEX.13.003737
Rogers, A.A., Samson, S., Kedia, S., Far-field evanescent wave propagation using coupled subwavelength gratings for a MEMS sensor (2009) J. Opt. Soc. Am., 26 (12), pp. 2526-2531
Cheben, P., Xu, D.-X., Janz, S., Densmore, A., Subwavelength waveguide grating for mode conversion and light coupling in integrated optics (2006) Optics Express, 14 (11), pp. 4695-4702. , http://www.opticsexpress.org/ViewMedia.cfm?id=90061&seq=0, DOI 10.1364/OE.14.004695
Lester, M., Skigin, D.C., Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays (2007) Journal of Optics A: Pure and Applied Optics, 9 (1), pp. 81-87. , DOI 10.1088/1464-4258/9/1/014, PII S1464425807319223, 014
Nikitin, A.Y., García-Vidal, F.J., Martín-Moreno, L., Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes (2009) J. Opt. A: Pure Appl. Opt., 11 (12), p. 125702
Nikitin, A.Y., García-Vidal, F.J., Martín-Moreno, L., Intercoupling of free space radiation to s-polarized confined modes via nanocavities (2009) Appl. Phys. Lett., 94 (6), p. 063119
Krishnan, A., Thio, T., Kim, T.J., Lezec, H.J., Ebbesen, T.W., Wolff, P.A., Pendry, J., Garcia-Vidal, F.J., Evanescently coupled resonance in surface plasmon enhanced transmission (2001) Optics Communications, 200 (1-6), pp. 1-7. , DOI 10.1016/S0030-4018(01)01558-9, PII S0030401801015589
Vohnsen, B., Bozhevolnyi, S.I., Coupling of surface-plasmon polaritons to directional far-field radiation by and individual surface protrusion (2001) Appl. Opt., 40 (33), pp. 6081-6085
Park, S., Lee, G., Song, S.H., Oh, C.H., Kim, P.S., Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings (2003) Opt. Lett., 28 (20), pp. 1870-1872
Lester, M., Skigin, D.C., Depine, R.A., Blaze produced by a dual-period array of subwavelength cylinders (2009) J. Opt. A: Pure Appl. Opt., 11 (4), p. 045705
Tan, W.-C., Sambles, J.R., Preist, T.W., Double-period zero-order metal gratings as effective selective absorbers (2000) Phys. Rev., 61 (19), pp. 13177-13182
Hibbins, A., Sambles, J.R., Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating (2002) Appl. Phys. Lett., 80 (13), pp. 2410-2412
Lockyear, M.J., Hibbins, A.P., Sambles, J.R., Lawrence, C.R., Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating (2005) Appl. Phys. Lett., 86 (18), p. 184103
Lepage, J.-F., McCarthy, N., Analysis of the diffractional properties of dual-period apodizing gratings: Theoretical and experimental results (2004) Appl. Opt., 43 (17), pp. 3504-3512
Crouse, D., Keshavareddy, P., A method for designing electromagnetic resonance enhanced silicon-on-insulator metalsemiconductormetal photodetectors (2006) J. Opt. A: Pure Appl. Opt., 8, p. 175181
Skigin, D.C., Depine, R.A., Transmission resonances in metallic compound gratings with subwavelength slits (2005) Phys. Rev. Lett., 95 (21), p. 217402. , http://www.vjnano.org/nano/
Skigin, D.C., Depine, R.A., Narrow gaps for transmission through metallic structures gratings with subwavelength slits (2006) Phys. Rev., 74 (4), p. 046606
Skigin, D.C., Loui, H., Popovic, Z., Kuester, E., Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits (2007) Phys. Rev., 76 (1), p. 016604
Navarro-Cía, M., Skigin, D.C., Beruete, M., Sorolla, M., Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime (2009) Appl. Phys. Lett., 94 (9), p. 091107
Beruete, M., Navarro-Cía, M., Skigin, D.C., Sorolla, M., Millimeter-wave phase resonances in compound reflection gratings with subwavelength grooves (2010) Opt. Express, 18 (23), pp. 23957-23964
Skigin, D.C., Depine, R.A., Diffraction by dual-period gratings (2007) Applied Optics, 46 (9), pp. 1385-1391. , DOI 10.1364/AO.46.001385
Lester, M., Skigin, D.C., Depine, R.A., Control of the diffracted response of wire arrays with double period (2008) Appl. Opt., 47 (11), pp. 1711-1717
Madrazo, A., Nieto-Vesperinas, M., Scattering of electromagnetic waves from a cylinder in front of a conducting plane (1995) J. Opt. Soc. Am., 12 (6), pp. 1298-1302
Madrazo, A., Nieto-Vesperinas, M., Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: Theory for the reflection photon scanning tunneling microscope (1996) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 13 (4), pp. 785-795
Arias-Gonzlez, J.R., Nieto-Vesperinas, M., Near-field distributions of resonant modes in small dielectric objects on flat surfaces (2000) Opt. Lett., 25 (11), pp. 782-784
Arias-Gonzlez, J.R., Nieto-Vesperinas, M., Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation (2001) J. Opt. Soc. Am., 18 (3), pp. 657-665
Ghenuche, P., Quidant, R., Badenes, G., Cumulative plasmon field enhancement in finite metal particle chains (2005) Optics Letters, 30 (14), pp. 1882-1884
Kottmann, J.P., Martin, O.J.F., Plasmon resonant coupling in metallic nanowires (2001) Opt. Express, 8 (12), pp. 655-663
Koenderink, F., Polman, A., Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains (2006) Phys. Rev., 74 (3), p. 033402
Scaffardi, L.B., Lester, M., Skigin, D.C., Tocho, J.O., Optical extinction spectroscopy used to characterize metallic nanowires (2007) Nanotechnology, 18 (31), p. 315402
Petit, R., (1980) Electromagnetic Theory of Gratings
ISSN:20408978
DOI:10.1088/2040-8978/13/3/035105