An optical nanoantenna made of plasmonic chain resonators

We propose a novel structure that behaves like an optical antenna and converts evanescent waves into propagating waves. The system comprises metallic subwavelength cylinders distributed in a dual-period array. It is illuminated by an evanescent wave generated by total internal reflection in a close...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Lester, Marcelo Fabián
Otros Autores: Skigin, D.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13286caa a22012257a 4500
001 PAPER-23716
003 AR-BaUEN
005 20250609082904.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-79952685390 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Lester, Marcelo Fabián 
245 1 3 |a An optical nanoantenna made of plasmonic chain resonators 
260 |c 2011 
270 1 0 |m Lester, M.; Grupo Optica de Sólidos-Elfo, Instituto de Física Arroyo Seco, Universidad Nacional Del Centro de la Provincia de Buenos Aires, Pinto 399 (cp 7000), Buenos Aires, Argentina; email: mlester@exa.unicen.edu.ar 
504 |a Greffet, J.-J., Nanoantennas for light emission (2005) Science, 308 (5728), pp. 1561-1563. , DOI 10.1126/science.1113355 
504 |a Pakizeh, T., Kall, M., Unidirectional ultracompact optical nanoantennas (2009) Nano Lett., 9 (6), pp. 2343-2349 
504 |a Novotny, L., Nano-optics: Optical antennas tuned to pitch (2008) Nature, 455 (7215), p. 887 
504 |a Taminiau, T.H., Stefani, F.D., Segerink, F.B., Van Hulst, N.F., Optical antennas direct single-molecule emission (2008) Nat. Photon., 2 (4), pp. 234-237 
504 |a Novotny, L., Hecht, B., (2006) Principles of Nano-Optics 
504 |a Girard, Ch., Joachim, Ch., Gauthier, S., The physics of the near-field (2000) Rep. Prog. Phys., 63 (6), pp. 893-938 
504 |a Girard, Ch., Near fields in nanostructures (2005) Rep. Prog. Phys., 68 (8), pp. 1883-1933 
504 |a Salerno, M., Krenn, J.R., Hohenau, A., Ditlbacher, H., Schider, G., Leitner, A., Aussenegg, F.R., The optical near-field of gold nanoparticle chains (2005) Optics Communications, 248 (4-6), pp. 543-549. , DOI 10.1016/j.optcom.2004.12.023, PII S0030401804012994 
504 |a Righini, M., Girard, C., Quidant, R., Light-induced manipulation with surface plasmons (2008) J. Opt. A: Pure Appl. Opt., 10 (9), p. 093001 
504 |a Quidant, R., Weeber, J.-C., Dereux, A., Peyrade, D., Chen, Y., Girard, C., Near-field observation of evanescent light wave coupling in subwavelength optical waveguides (2002) Europhys. Lett., 57 (2), p. 191 
504 |a Des Francs, G.C., Girard, C., Weeber, J.-C., Chicane, C., David, T., Dereux, A., Peyrade, D., Optical analogy to electronic quantum corrals (2001) Physical Review Letters, 86 (21), pp. 4950-4953. , DOI 10.1103/PhysRevLett.86.4950 
504 |a Zhang, Z., Du, J., Guo, X., Luo, X., Du, C., High-efficiency transmission of nanoscale information by surface plasmon polaritons from near field to far field (2007) J. Appl. Phys., 102 (7), p. 074301 
504 |a Lester, M., Nieto-Vesperinas, M., Optical forces on microparticles in an evanescent laser field (1999) Optics Letters, 24 (14), pp. 936-938 
504 |a Lester, M., Arias-Gonzalez, J.R., Nieto-Vesperinas, M., Fundamentals and model of photonic-force microscopy (2001) Optics Letters, 26 (10), pp. 707-709 
504 |a Mulin, D., Girard, C., Colas Des Francs, G., Spajer, M., Courjon, D., Near-field optical probing of two-dimensional photonic crystals: Theory and experiment (2000) J. Microsc., 202 (1), pp. 110-116 
504 |a Fang, N., Lee, H., Sun, C., Zhang, X., Sub-diffraction-limited optical imaging with a silver superlens (2005) Science, 308 (5721), pp. 534-537. , DOI 10.1126/science.1108759 
504 |a Tetz, K.A., Rokitski, R., Nezhad, M., Fainman, Y., Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating (2005) Appl. Phys. Lett., 86 (11), p. 111110 
504 |a Dintinger, J., Klein, S., Bustos, F., Barnes, W.L., Ebbesen, T.W., Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays (2005) Phys. Rev., 71 (3), p. 035424 
504 |a Byun, K.M., Kim, S.J., Kim, D., Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis (2005) Optics Express, 13 (10), pp. 3737-3742. , http://www.opticsexpress.org/view_file.cfm?doc= %24%29L%2F%28I%40%20%20%0A&id=%25%28%2C%3F%27J%3C%3C%20%0A, DOI 10.1364/OPEX.13.003737 
504 |a Rogers, A.A., Samson, S., Kedia, S., Far-field evanescent wave propagation using coupled subwavelength gratings for a MEMS sensor (2009) J. Opt. Soc. Am., 26 (12), pp. 2526-2531 
504 |a Cheben, P., Xu, D.-X., Janz, S., Densmore, A., Subwavelength waveguide grating for mode conversion and light coupling in integrated optics (2006) Optics Express, 14 (11), pp. 4695-4702. , http://www.opticsexpress.org/ViewMedia.cfm?id=90061&seq=0, DOI 10.1364/OE.14.004695 
504 |a Lester, M., Skigin, D.C., Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays (2007) Journal of Optics A: Pure and Applied Optics, 9 (1), pp. 81-87. , DOI 10.1088/1464-4258/9/1/014, PII S1464425807319223, 014 
504 |a Nikitin, A.Y., García-Vidal, F.J., Martín-Moreno, L., Enhanced optical transmission, beaming and focusing through a subwavelength slit under excitation of dielectric waveguide modes (2009) J. Opt. A: Pure Appl. Opt., 11 (12), p. 125702 
504 |a Nikitin, A.Y., García-Vidal, F.J., Martín-Moreno, L., Intercoupling of free space radiation to s-polarized confined modes via nanocavities (2009) Appl. Phys. Lett., 94 (6), p. 063119 
504 |a Krishnan, A., Thio, T., Kim, T.J., Lezec, H.J., Ebbesen, T.W., Wolff, P.A., Pendry, J., Garcia-Vidal, F.J., Evanescently coupled resonance in surface plasmon enhanced transmission (2001) Optics Communications, 200 (1-6), pp. 1-7. , DOI 10.1016/S0030-4018(01)01558-9, PII S0030401801015589 
504 |a Vohnsen, B., Bozhevolnyi, S.I., Coupling of surface-plasmon polaritons to directional far-field radiation by and individual surface protrusion (2001) Appl. Opt., 40 (33), pp. 6081-6085 
504 |a Park, S., Lee, G., Song, S.H., Oh, C.H., Kim, P.S., Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings (2003) Opt. Lett., 28 (20), pp. 1870-1872 
504 |a Lester, M., Skigin, D.C., Depine, R.A., Blaze produced by a dual-period array of subwavelength cylinders (2009) J. Opt. A: Pure Appl. Opt., 11 (4), p. 045705 
504 |a Tan, W.-C., Sambles, J.R., Preist, T.W., Double-period zero-order metal gratings as effective selective absorbers (2000) Phys. Rev., 61 (19), pp. 13177-13182 
504 |a Hibbins, A., Sambles, J.R., Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating (2002) Appl. Phys. Lett., 80 (13), pp. 2410-2412 
504 |a Lockyear, M.J., Hibbins, A.P., Sambles, J.R., Lawrence, C.R., Low angular-dispersion microwave absorption of a metal dual-period nondiffracting hexagonal grating (2005) Appl. Phys. Lett., 86 (18), p. 184103 
504 |a Lepage, J.-F., McCarthy, N., Analysis of the diffractional properties of dual-period apodizing gratings: Theoretical and experimental results (2004) Appl. Opt., 43 (17), pp. 3504-3512 
504 |a Crouse, D., Keshavareddy, P., A method for designing electromagnetic resonance enhanced silicon-on-insulator metalsemiconductormetal photodetectors (2006) J. Opt. A: Pure Appl. Opt., 8, p. 175181 
504 |a Skigin, D.C., Depine, R.A., Transmission resonances in metallic compound gratings with subwavelength slits (2005) Phys. Rev. Lett., 95 (21), p. 217402. , http://www.vjnano.org/nano/ 
504 |a Skigin, D.C., Depine, R.A., Narrow gaps for transmission through metallic structures gratings with subwavelength slits (2006) Phys. Rev., 74 (4), p. 046606 
504 |a Skigin, D.C., Loui, H., Popovic, Z., Kuester, E., Bandwidth control of forbidden transmission gaps in compound structures with subwavelength slits (2007) Phys. Rev., 76 (1), p. 016604 
504 |a Navarro-Cía, M., Skigin, D.C., Beruete, M., Sorolla, M., Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime (2009) Appl. Phys. Lett., 94 (9), p. 091107 
504 |a Beruete, M., Navarro-Cía, M., Skigin, D.C., Sorolla, M., Millimeter-wave phase resonances in compound reflection gratings with subwavelength grooves (2010) Opt. Express, 18 (23), pp. 23957-23964 
504 |a Skigin, D.C., Depine, R.A., Diffraction by dual-period gratings (2007) Applied Optics, 46 (9), pp. 1385-1391. , DOI 10.1364/AO.46.001385 
504 |a Lester, M., Skigin, D.C., Depine, R.A., Control of the diffracted response of wire arrays with double period (2008) Appl. Opt., 47 (11), pp. 1711-1717 
504 |a Madrazo, A., Nieto-Vesperinas, M., Scattering of electromagnetic waves from a cylinder in front of a conducting plane (1995) J. Opt. Soc. Am., 12 (6), pp. 1298-1302 
504 |a Madrazo, A., Nieto-Vesperinas, M., Surface structure and polariton interactions in the scattering of electromagnetic waves from a cylinder in front of a conducting grating: Theory for the reflection photon scanning tunneling microscope (1996) Journal of the Optical Society of America A: Optics and Image Science, and Vision, 13 (4), pp. 785-795 
504 |a Arias-Gonzlez, J.R., Nieto-Vesperinas, M., Near-field distributions of resonant modes in small dielectric objects on flat surfaces (2000) Opt. Lett., 25 (11), pp. 782-784 
504 |a Arias-Gonzlez, J.R., Nieto-Vesperinas, M., Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation (2001) J. Opt. Soc. Am., 18 (3), pp. 657-665 
504 |a Ghenuche, P., Quidant, R., Badenes, G., Cumulative plasmon field enhancement in finite metal particle chains (2005) Optics Letters, 30 (14), pp. 1882-1884 
504 |a Kottmann, J.P., Martin, O.J.F., Plasmon resonant coupling in metallic nanowires (2001) Opt. Express, 8 (12), pp. 655-663 
504 |a Koenderink, F., Polman, A., Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains (2006) Phys. Rev., 74 (3), p. 033402 
504 |a Scaffardi, L.B., Lester, M., Skigin, D.C., Tocho, J.O., Optical extinction spectroscopy used to characterize metallic nanowires (2007) Nanotechnology, 18 (31), p. 315402 
504 |a Petit, R., (1980) Electromagnetic Theory of Gratings 
506 |2 openaire  |e Política editorial 
520 3 |a We propose a novel structure that behaves like an optical antenna and converts evanescent waves into propagating waves. The system comprises metallic subwavelength cylinders distributed in a dual-period array. It is illuminated by an evanescent wave generated by total internal reflection in a close interface. For particular wavelengths, the system exhibits resonances and the inhomogeneous wave is converted into propagating waves that radiate to the far field. This effect can be controlled by varying the geometrical parameters of the structure, such as the period and the inclination angle. Therefore, the transmitted intensity can be sent to a predesigned direction. This structure could be used in highly sensitive detection devices, among other applications. © 2011 IOP Publishing Ltd.  |l eng 
593 |a Grupo Optica de Sólidos-Elfo, Instituto de Física Arroyo Seco, Universidad Nacional Del Centro de la Provincia de Buenos Aires, Pinto 399 (cp 7000), Buenos Aires, Argentina 
593 |a Grupo de Electromagnetismo Aplicado, Departamento de Física, IFIBA (CONICET) Ciudad Universitaria, C1428EHA Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina 
690 1 0 |a DIFFRACTION AND SCATTERING 
690 1 0 |a SUBWAVELENGTH STRUCTURES 
690 1 0 |a SURFACE PLASMONS 
690 1 0 |a DIFFRACTION AND SCATTERING 
690 1 0 |a EVANESCENT WAVE 
690 1 0 |a FAR FIELD 
690 1 0 |a GEOMETRICAL PARAMETERS 
690 1 0 |a HIGHLY SENSITIVE 
690 1 0 |a INCLINATION ANGLES 
690 1 0 |a INHOMOGENEOUS WAVES 
690 1 0 |a NANOANTENNAS 
690 1 0 |a NOVEL STRUCTURES 
690 1 0 |a OPTICAL ANTENNAS 
690 1 0 |a OTHER APPLICATIONS 
690 1 0 |a PLASMONIC 
690 1 0 |a SUB-WAVELENGTH 
690 1 0 |a SUB-WAVELENGTH STRUCTURES 
690 1 0 |a SURFACE PLASMONS 
690 1 0 |a TOTAL INTERNAL REFLECTIONS 
690 1 0 |a TRANSMITTED INTENSITIES 
690 1 0 |a CYLINDERS (SHAPES) 
690 1 0 |a DIFFRACTION 
690 1 0 |a ELECTROMAGNETIC WAVE REFLECTION 
690 1 0 |a REACTIVE ION ETCHING 
690 1 0 |a REFRACTIVE INDEX 
690 1 0 |a WAVE TRANSMISSION 
690 1 0 |a PLASMONS 
700 1 |a Skigin, D.C. 
773 0 |d 2011  |g v. 13  |k n. 3  |p J. Opt.  |x 20408978  |t Journal of Optics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-79952685390&doi=10.1088%2f2040-8978%2f13%2f3%2f035105&partnerID=40&md5=b569895e8093fa61606bc204524e1052  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/2040-8978/13/3/035105  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_20408978_v13_n3_p_Lester  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_20408978_v13_n3_p_Lester  |y Registro en la Biblioteca Digital 
961 |a paper_20408978_v13_n3_p_Lester  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84669