Load-induced modulation of signal transduction networks

Biological signal transduction networks are commonly viewed as circuits that pass along information - in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks - to transcriptional and other components. Here, we report on a "reverse-causality" ph...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Jiang, P.
Otros Autores: Ventura, A.C, Sontag, E.D, Merajver, S.D, Ninfa, A.J, Del Vecchio, D.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11508caa a22011897a 4500
001 PAPER-23596
003 AR-BaUEN
005 20230518205518.0
008 190411s2011 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-80054039227 
024 7 |2 cas  |a nucleotidyltransferase, 9031-50-9; Enzymes; Nucleotidyltransferases, 2.7.7.-; PII Nitrogen Regulatory Proteins; regulatory protein uridylyltransferase, 2.7.7.59 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Jiang, P. 
245 1 0 |a Load-induced modulation of signal transduction networks 
260 |c 2011 
270 1 0 |m Ninfa, A.J.; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, United States; email: aninfa@umich.edu 
506 |2 openaire  |e Política editorial 
504 |a Alon, U., Biological networks: The tinkerer as an engineer (2003) Science, 301, pp. 1866-1867 
504 |a Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W., From molecular to modular cell biology (1999) Nature, 402, pp. C47-C52 
504 |a Alexander, R.P., Kim, P.M., Emonet, T., Gerstein, M.B., Understanding modularity in molecular networks requires dynamics (2009) Sci. Signal., 2, pp. 1-4 
504 |a Dunlap, J.C., Molecular bases for circadian clocks (1999) Cell, 96, pp. 271-290 
504 |a Laub, M.T., McAdams, H.H., Feldblyum, T., Fraser, C.M., Shapiro, L., Global analysis of the genetic network controlling a bacterial cell cycle (2000) Science, 290, pp. 2144-2148 
504 |a Nishikawa, T., Gulbahce, N., Motter, A.E., Spontaneous reaction silencing in metabolic optimization (2008) PloS Comput. Biol., 4, pp. e1000236 
504 |a Marshall, C.J., Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation (1995) Cell, 80, pp. 179-185 
504 |a Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D., The IkB-NF-kB signaling module: Temporal control and selective gene activation (2002) Science, 298, pp. 1241-1245 
504 |a Blume-Jensen, P., Hunter, T., Oncogenic kinase signalling (2001) Nature, 411, pp. 355-365 
504 |a Del Vecchio, D., Ninfa, A.J., Sontag, E.D., Modular cell biology: Retroactivity and insulation (2008) Mol. Syst. Biol., 4, p. 161 
504 |a Ventura, A.C., Sepulchre, J.-A., Merajver, S.D., A hidden feedback in signaling cascades is revealed (2008) PLoS Comput. Biol., 4, pp. e1000041 
504 |a Saez-Rodriguez, J., Kremling, A., Gilles, E.D., Dissecting the puzzle of life: Modularization of signal transduction networks (2005) Comput. Chem. Eng., 29, pp. 619-629 
504 |a Sauro, H.M., Kholodenko, B.N., Quantitative analysis of signaling networks (2004) Prog. Biophys. Mol. Biol., 86, pp. 5-43 
504 |a Markevich, N.I., Hoek, J.B., Kholodenko, B.N., Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades (2004) J. Cell Biol., 164, pp. 353-359 
504 |a Blüthgen, N., Bruggeman, F.J., Legewie, S., Herzel, H., Westerhoff, H.V., Kholodenko, B.N., Effects of sequestration on signal transduction cascades (2006) FEBS J., 273, pp. 895-906 
504 |a Ortega, F., Acerenza, L., Westerhoff, H.V., Mas, F., Cascante, M., Product dependence and bifunctionality compromise the ultrasensitivity of signal transduction cascades (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 1170-1175 
504 |a Jayanthi, S., Del Vecchio, D., On the compromise between retroactivity attenuation and noise amplification in gene regulatory networks (2009) Proc. IEEE Conf. on Decision and Control, pp. 4565-4571 
504 |a Kim, K.H., Sauro, H.M., Fan-out in gene regulatory networks (2010) J. Biol. Eng., 4, p. 16 
504 |a Ventura, A.C., Jiang, P., Van Wassenhove, L., Del Vecchio, D., Merajver, S.D., Ninfa, A.J., Signaling properties of a covalent modification cycle are altered by a downstream target (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 10032-10037 
504 |a Ninfa, A.J., Jiang, P., Atkinson, M.R., Peliska, J.A., Integration of antagonistic signal in the regulation of nitrogen assimilation in Escherichia coli (2000) Curr. Top. Cell. Regul., 36, pp. 31-75 
504 |a Goldbeter, A., Koshland Jr., D.E., An amplified sensitivity arising from covalent modification in biological systems (1981) Proc. Natl. Acad. Sci. U.S.A., 78, pp. 6840-6844 
504 |a Mettetal, J.T., Muzzey, D., Gómez-Uribe, C., Van Oudenaarden, A., The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae (2008) Science, 319, pp. 482-484 
504 |a Behar, M., Dohlman, H.G., Elston, T.C., Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 16146-16151 
504 |a Hersen, P., McClean, M.N., Mahadevan, L., Ramanathan, S., Signal processing by the HOG MAP kinase pathway (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 7165-7170 
504 |a Kholodenko, B.N., Hancock, J.F., Kolch, W., Signalling ballet in space and time (2010) Nat. Rev. Mol. Cell Biol., 11, pp. 414-426 
504 |a Jiang, P., Ninfa, A.J., Sensation and signaling of α-ketoglutarate and adenylylate energy charge by the Escherichia coli PII signal transduction protein require cooperation of the three ligand-binding sites within the PII trimer (2009) Biochemistry, 48, pp. 11522-11531 
504 |a Jiang, P., Ninfa, A.J., Escherichia coli PII signal transduction protein controlling nitrogen assimilation acts as a sensor of adenylylate energy charge in vitro (2007) Biochemistry, 46, pp. 12979-12996 
504 |a Ninfa, A.J., Jiang, P., PII signal transduction proteins: Sensors of α-ketoglutarate that regulate nitrogen metabolism (2005) Curr. Opin. Microbiol., 8, pp. 168-173 
504 |a Huang, C.Y., Ferrell Jr., J.E., Ultrasensitivity in the mitogen-activated protein kinase cascade (1996) Proc. Natl. Acad. Sci. U.S.A., 93, pp. 10078-10083 
504 |a Kim, Y., Coppey, M., Grossman, R., Ajuria, L., Jiménez, G., Paroush, Z., Shvartsman, S.Y., MAPK substrate competition integrates pattern signals in the Drosophila embryo (2010) Curr. Biol., 20, pp. 446-451 
504 |a Kim, Y., Paroush, Z., Nairz, K., Hafen, E., Jiménez, G., Shvartsman, S.Y., Substrate-dependent control of MAPK phosphorylation in vivo (2011) Mol. Syst. Biol., 7, p. 467 
504 |a Jiang, P., Peliska, J.A., Ninfa, A.J., Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli (1998) Biochemistry, 37, pp. 12795-12801 
504 |a Gomez-Uribe, C., Verghese, G.C., Mirny, L.A., Operating regimes of signaling cycles: Statics, dynamics, and noise filtering (2007) PLoS Comput. Biol., 3, pp. e246 
504 |a Jayanthi, S., Del Vecchio, D., Retroactivity attenuation in bio-molecular systems based on timescale separation (2010) IEEE Trans. Aut. Control, 56, pp. 748-761 
504 |a Behar, M., Dohlman, H.G., Elston, T.C., Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 16146-16151 
504 |a Zhu, J., Burgner, J.W., Harms, E., Belitsky, B.R., Smith, J.L., A new arrangement of (β/α) 8 barrels in the synthase subunit of PLP synthase (2005) J. Biol. Chem., 280, pp. 27914-27923 
520 3 |a Biological signal transduction networks are commonly viewed as circuits that pass along information - in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks - to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitivechanges in response dynamics occurred for a covalent modification cycle when load was present.Loading altered the response time of a system, depending on whether the activity of one of the enzymeswas maximal and the other was operating at its minimal rate or whether both enzymes were operating atsubmaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," wereassociated with increased or decreased response times, respectively. The bandwidth, the range of frequencyin which the system can process information, decreased in the presence of load, suggesting thatdownstream targets participate in establishing a balance between noise-filtering capabilities and a circuit'sability to process high-frequency stimulation. Nodes in a signaling network are not independentrelay devices, but rather are modulated by their downstream targets.  |l eng 
593 |a Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0606, United States 
593 |a Institute for Physiology, Molecular Biology, and Neuroscience, Department of Biology, Universidad de Buenos Aires, Pabellón 2, Buenos Aires C1428EHA, Argentina 
593 |a Department of Mathematics, Rutgers University, New Brunswick, NJ 08854-8019, United States 
593 |a Department of Internal Medicine, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States 
593 |a Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States 
690 1 0 |a ARTICLE 
690 1 0 |a ENZYME ACTIVITY 
690 1 0 |a INFORMATION PROCESSING 
690 1 0 |a MATHEMATICAL MODEL 
690 1 0 |a MODULATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a SIGNAL PROCESSING 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a ALLOSTERISM 
690 1 0 |a BIOLOGICAL MODEL 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a FEEDBACK SYSTEM 
690 1 0 |a METABOLISM 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SYSTEMS BIOLOGY 
690 1 0 |a TIME 
690 1 0 |a ENZYME 
690 1 0 |a NITROGEN REGULATORY PROTEIN 
690 1 0 |a NUCLEOTIDYLTRANSFERASE 
690 1 0 |a REGULATORY PROTEIN URIDYLYLTRANSFERASE 
690 1 0 |a ALLOSTERIC REGULATION 
690 1 0 |a ENZYMES 
690 1 0 |a ESCHERICHIA COLI 
690 1 0 |a FEEDBACK, PHYSIOLOGICAL 
690 1 0 |a MODELS, BIOLOGICAL 
690 1 0 |a NUCLEOTIDYLTRANSFERASES 
690 1 0 |a PII NITROGEN REGULATORY PROTEINS 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a SYSTEMS BIOLOGY 
690 1 0 |a TIME FACTORS 
700 1 |a Ventura, A.C. 
700 1 |a Sontag, E.D. 
700 1 |a Merajver, S.D. 
700 1 |a Ninfa, A.J. 
700 1 |a Del Vecchio, D. 
773 0 |d 2011  |g v. 4  |k n. 194  |p Sci. Signal.  |x 19450877  |t Science Signaling 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-80054039227&doi=10.1126%2fscisignal.2002152&partnerID=40&md5=073fe5b69028e8f241290e7c87e20ecd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1126/scisignal.2002152  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_19450877_v4_n194_p_Jiang  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19450877_v4_n194_p_Jiang  |y Registro en la Biblioteca Digital 
961 |a paper_19450877_v4_n194_p_Jiang  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84549