Dissolution of nickel ferrite in aqueous solutions containing oxalic acid and ferrous salts

The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate- oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Figueroa, C.A
Otros Autores: Sileo, E.E, Morando, P.J, Blesa, M.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Academic Press Inc. 2000
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07862caa a22009497a 4500
001 PAPER-2359
003 AR-BaUEN
005 20230518203145.0
008 190411s2000 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0034657930 
024 7 |2 cas  |a ferric oxide, 1309-37-1, 56449-54-8; ferrous ion, 15438-31-0; iron, 14093-02-8, 53858-86-9, 7439-89-6; nickel, 7440-02-0; oxalic acid, 144-62-7; tartaric acid, 133-37-9, 3715-17-1, 526-83-0, 526-94-3, 87-69-4 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCISA 
100 1 |a Figueroa, C.A. 
245 1 0 |a Dissolution of nickel ferrite in aqueous solutions containing oxalic acid and ferrous salts 
260 |b Academic Press Inc.  |c 2000 
270 1 0 |m Blesa, M.A.; Unidad de Actividad Quimica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina; email: miblesa@cnea.gov.ar 
506 |2 openaire  |e Política editorial 
504 |a Blesa, M.A., Morando, P.J., Regazzoni, A.E., (1994) Chemical Dissolution of Metal Oxides, , Boca Raton: CRC Press 
504 |a Blesa, M.C., Amador, U., Morán, E., Menéndez, N., Tornero, J.D., Rodríguez-Carvajal, J., (1993) Solid State Ionics, 6365, p. 429 
504 |a Gainsford, A.R., Sisley, M.J., Swaddle, T.W., Bayliss, P., (1975) Can. J. Chem., 53, p. 12 
504 |a Regazzoni, A.E., Matijevic, E., (1982) J. Colloid Interface Sci., 90, p. 100 
504 |a Huang, C.-L., Matijevic, E., (1996) Solid State Ionics, 84, p. 249 
504 |a Marcilly, C., Courty, P., Delmon, B., (1970) J. Am. Ceram. Soc., 53, p. 56 
504 |a Jacobo, S., Domingo Pascual, C., Rodríguez Clemente, R., Blesa, M.A., (1997) J. Mater. Sci., 32, p. 1025 
504 |a Blesa, M.A., Marinovich, H.A., Baumgartner, E.C., Maroto, A.J.G., (1987) Inorg. Chem., 26, p. 3713 
504 |a Zinder, B., Furrer, G., Stumm, W., (1986) Geochim. Cosmochim. Acta, 50, p. 1861 
504 |a Ludwing, C., Devidal, J.-L., Casey, W.H., (1996) Geochim. Cosmochim. Acta, 60, p. 213 
504 |a García Rodenas, L.A., Iglesias, A.M., Bruyere, V.I.E., Morando, P.J., Blesa, M.A., (1996) 70th Colloid and Surface Science Symposium, Potsdam, NY, 1996, , Washington: American Chemical Society 
504 |a Blesa, M.A., Weisz, A.D., Morando, P.J., Salfity, J.A., Magaz, G.E., Regazzoni, A.E., (2000) Coord. Chem. Rev., 196, p. 31 
504 |a Nii, K., (1970) Corrosion Sci., 10, p. 571 
504 |a Marcilly, C., Delmon, B., (1795) C. R. Acad. Sci. Paris, Ser. C, 268, p. 1969 
504 |a Courty, P., Delmon, B., (1969) C. R. Acad. Sci. Paris, Ser. C, 268, p. 1874 
504 |a Leussing, D.L., Newman, L., (1956) J. Am. Chem. Soc., 78, p. 552 
504 |a Vogel, A.J., (1961) Química Analítica Cuantitativa, p. 915. , Kapelusz Buenos Aires 
504 |a Hill, R.J., Kraig, J.R., Gibbs, G.V., (1979) Phys. Chem. Miner., 4, p. 315 
504 |a Data Base from International Center for Diffraction Data (ICDD), , PDF 33-0664 
504 |a Music, S., Gotic, M., Czakó-Nagy, I., Popovic, S., Balzar, D., (1996) ICAME-95, , I. Ortalli. Bologna: SIF 
504 |a Suter, D., Siffert, C., Sulzberger, B., Stumm, W., (1988) Naturwissenschaften, 75, p. 571 
504 |a Rueda, E.H., Grassi, R.L., Blesa, M.A., (1985) J. Colloid Interface Sci., 106, p. 243 
504 |a Litter, M.I., Baugmgartner, E.C., Urrutia, G.A., Blesa, M.A., (1991) Environ. Sci. Technol., 25, p. 1907 
504 |a Ballesteros, M.C., Rueda, E.H., Blesa, M.A., (1998) J. Colloid Interface Sci., 201, pp. 13-19 
504 |a Borghi, E.B., Morando, P.J., Blesa, M.A., (1991) Langmuir, 7, p. 1652 
504 |a Urrutia, G.A., Blesa, M.A., (1988) React. Solids, 6, pp. 281-284 
504 |a Shailaja, M., Narasimhan, S.V., (1991) J. Nucl. Sci. Technol., 28, p. 748 
504 |a Jacobo, S.E., Regazzoni, A.E., Blesa, M.A., submitted; Borghi, E.B., Regazzoni, A.E., Maroto, A.J.G., Blesa, M.A., (1989) J. Colloid Interface Sci., 130, p. 299 
520 3 |a The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate- oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni1.06Fe1.96O4. The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation; the best fitting corresponds to K(1/ads) = 25.6 mol-1 dm-3 and k(1/max) = 9.17 x 10-7 mol m-2 s-1 and K(2/ads) = 37.1 x 103 mol-1 dm-3 and k(1/max) = 62.3 x 10-7 mol m-2 s-1, respectively. In the second stage, Langmuir- Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite, with K(1/ads) = 20.8 mol-1 dm3 and K(2/ads) = 1.16 x 105 mol-1 dm3. For iron, k(1/max) = 1.02 x 10-7 mol of Fe m-2 s2+-1 and k(2/max) = 2.38 x 10-7 mol of Fe m-2 s-1; for nickel, the rate constants k(1/max) and k(2/max) are 2.4 and 1.79 times smaller, respectively. The factor 1.79 agrees nicely with the stoichiometric ratio, whereas the factor 2.4 implies the accumulation of some nickel in the residual particles. The rate of nickel dissolution in oxalic acid is higher than that in bunsenite by a factor of 8, whereas hematite is more reactive by a factor of 9 (in the absence of Fe(II)) and 27 (in the presence of Fe (II)). It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. (C) 2000 Academic Press.  |l eng 
593 |a Unidad de Actividad Química, Comn. Nac. de Ener. Atómica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina 
593 |a INQUIMAE, Fac. de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina 
593 |a Inst. de Tecnología J. Sabato, Univ. Nac. de Gen. San Martín, San Martín, Argentina 
593 |a Escuela de Posgrado, Univ. Nac. de Gen. San Martín, San Martín, Argentina 
690 1 0 |a DISSOLUTION 
690 1 0 |a FERROUS OXALATE 
690 1 0 |a MIXED OXIDES 
690 1 0 |a NICKEL FERRITE 
690 1 0 |a OXALIC ACID 
690 1 0 |a SURFACE COMPLEXATION 
690 1 0 |a FERRIC OXIDE 
690 1 0 |a FERROUS ION 
690 1 0 |a IRON 
690 1 0 |a NICKEL 
690 1 0 |a OXALIC ACID 
690 1 0 |a TARTARIC ACID 
690 1 0 |a AQUEOUS SOLUTION 
690 1 0 |a ARTICLE 
690 1 0 |a CATALYSIS 
690 1 0 |a DISSOLUTION 
690 1 0 |a OXIDATION REDUCTION REACTION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a X RAY DIFFRACTION 
700 1 |a Sileo, E.E. 
700 1 |a Morando, P.J. 
700 1 |a Blesa, M.A. 
773 0 |d Academic Press Inc., 2000  |g v. 225  |h pp. 403-410  |k n. 2  |p J. Colloid Interface Sci.  |x 00219797  |w (AR-BaUEN)CENRE-15  |t Journal of Colloid and Interface Science 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034657930&doi=10.1006%2fjcis.2000.6734&partnerID=40&md5=1d6e993d4bf71a841dec685736ca84d3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1006/jcis.2000.6734  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00219797_v225_n2_p403_Figueroa  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00219797_v225_n2_p403_Figueroa  |y Registro en la Biblioteca Digital 
961 |a paper_00219797_v225_n2_p403_Figueroa  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 63312