Swap rate variance swaps
We study the hedging and valuation of generalized variance swaps defined on a forward swap interest rate. Our motivation is the fundamental role of variance swaps in the transfer of variance risk, and the extensive empirical evidence documenting that the variance realized by interest rates is stocha...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 07010caa a22006857a 4500 | ||
|---|---|---|---|
| 001 | PAPER-23490 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205512.0 | ||
| 008 | 190411s2012 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-84857182917 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Merener, N. | |
| 245 | 1 | 0 | |a Swap rate variance swaps |
| 260 | |c 2012 | ||
| 270 | 1 | 0 | |m Merener, N.; Business School, Universidad Torcuato Di Tella, 1010 Saenz Valiente, Buenos Aires 1428, Argentina; email: nmerener@utdt.edu |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Albanese, C., Lo, H., Mijatovic, A., Spectral methods for volatility derivatives (2009) Quant. Finance, 9 (6), pp. 663-692 | ||
| 504 | |a Andersen, T., Lund, J., Estimating continuous-time stochastic volatility models of the short-term interest rate (1997) J. Econometr., 77 (2), pp. 343-377 | ||
| 504 | |a Ball, C.A., Torous, W.N., The stochastic volatility of short-term interest rates: Some international evidence (2000) J. Finance, 54 (6), pp. 2339-2359 | ||
| 504 | |a Breeden, D., Litzenberger, R., Prices of state contingent claims implicit in option prices (1978) J. Business, 51, pp. 621-651 | ||
| 504 | |a Brigo, D., Mercurio, F., (2006) Interest Rate Models - Theory and Practice, , New York: Springer | ||
| 504 | |a Broadie, M., Jain, A., Pricing and hedging volatility derivatives (2008) J. Deriv., 15 (3), pp. 7-24 | ||
| 504 | |a Carr, P., Lee, R., (2008) Robust replication of volatility derivatives, , www.math.uchicago.edu/~rl, Working Paper,. Available online at: | ||
| 504 | |a Carr, P., Lee, R., (2008) Hedging variance options on continuous semimartingales, , www.math.uchicago.edu/~rl, Working Paper,. Available online at | ||
| 504 | |a Carr, P., Lewis, K., Corridor variance swaps (2004) Risk, pp. 67-72 | ||
| 504 | |a Carr, P., Madan, D., Towards a theory of volatility trading (1998) Volatility: New Estimation Techniques for Pricing Derivatives, pp. 417-427. , In: Jarrow R, editors London: Risk Publications | ||
| 504 | |a Carr, P., Madan, D., Geman, H., Yor, M., Pricing options on realized variance (2005) Finance Stochast., 9, pp. 453-475 | ||
| 504 | |a Carr, P., Wu, L., Variance risk premiums (2008) Rev. Financial Stud., 22 (3), pp. 1311-1341 | ||
| 504 | |a Demeterfi, K., Derman, E., Kamal, M., Zou, J., (1999) More than you ever wanted to know about volatility swaps, , Goldman Sachs, Quantitative Strategies Research Notes | ||
| 504 | |a Dupire, B., Model art (1993) Risk, 9, pp. 118-120 | ||
| 504 | |a Gray, S.F., Modeling the conditional distribution of interest rates as a regime-switching process (1996) J. Financial Econ., 9, pp. 27-62 | ||
| 504 | |a Heath, D., Jarrow, R., Morton, A., Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuation (1992) Econometrica, 60, pp. 77-105 | ||
| 504 | |a Howison, S., Rafailidis, A., Rasmussen, H., On the pricing and hedging of volatility derivatives (2004) Appl. Math. Finance, 11, pp. 317-346 | ||
| 504 | |a Javaheri, A., Wilmott, P., Haug, E., GARCH and volatility swaps (2004) Quant. Finance, 4, pp. 589-595 | ||
| 504 | |a Johannes, M., The statistical and economic role of jumps in interest rates (2004) J. Finance, 59, pp. 227-260 | ||
| 504 | |a Karatzas, I., Shreve, S., (1991) Brownian Motion and Stochastic Calculus, , Berlin: Springer | ||
| 504 | |a Lee, R., Gamma swap (2010) Encyclopedia of Quantitative Finance, , (Wiley Online Library) | ||
| 504 | |a Lee, R., Weighted variance swap (2010) Encyclopedia of Quantitative Finance, , (Wiley Online Library) | ||
| 504 | |a Little, T., Pant, V., A finite-difference method for the valuation of variance swaps (2001) J. Comput. Finance, 5, p. 1 | ||
| 504 | |a Medvegyev, P., (2007) Stochastic Integration Theory, , Oxford: Oxford University Press | ||
| 504 | |a Merener, N., Libor volatility derivatives (2009) Modelling Interest Rates, , In: Mercurio F, editors London: Risk Books | ||
| 504 | |a Musiela, M., Rutkowski, M., (1997) Martingale Methods in Financial Modeling, , New York: Springer | ||
| 504 | |a Neuberger, A., Volatililty trading (1990) Working Paper, London Business School | ||
| 504 | |a Protter, P., (1990) Stochastic Integration and Differential Equations, , Berlin: Springer | ||
| 504 | |a Stakgold, I., (1997) Green's Functions and Boundary Value Problems, , New York: Wiley-Interscience | ||
| 504 | |a Windcliff, H., Forsyth, P.A., Vetzal, K.R., Pricing methods and hedging strategies for volatility derivatives (2006) J. Bank. Finance, 30, pp. 409-431 | ||
| 520 | 3 | |a We study the hedging and valuation of generalized variance swaps defined on a forward swap interest rate. Our motivation is the fundamental role of variance swaps in the transfer of variance risk, and the extensive empirical evidence documenting that the variance realized by interest rates is stochastic. We identify a hedging rule involving a static European contract and the gains of a dynamic position on forward interest rate swaps. Two distinguishing features arise in the context of interest rates: the nonlinear and multidimensional relationship between the values of the dynamically traded contracts and the underlying swap rate, and the possible stochasticity of the interest rate at which gains are reinvested. The combination of these two features leads to additional terms in the cumulative dynamic trading gains, which depend on realized variance and are taken into consideration in the determination of the appropriate static hedge. We characterize the static payoff function as the solution of an ordinary differential equation, and derive explicitly the associated dynamic strategy. We use daily interest rate data between 1997 and 2007 to test the effectiveness of our hedging methodology in arithmetic and geometric variance swaps and verify that the hedging error is small compared with the bid-ask spread in swaption prices. © 2012 Taylor and Francis Group, LLC. |l eng | |
| 593 | |a Business School, Universidad Torcuato Di Tella, 1010 Saenz Valiente, Buenos Aires 1428, Argentina | ||
| 690 | 1 | 0 | |a DERIVATIVES HEDGING |
| 690 | 1 | 0 | |a INTEREST RATE DERIVATIVES |
| 690 | 1 | 0 | |a STOCHASTIC VOLATILITY |
| 690 | 1 | 0 | |a VOLATILITY MODELLING |
| 773 | 0 | |d 2012 |g v. 12 |h pp. 249-261 |k n. 2 |p Quant. Financ. |x 14697688 |t Quantitative Finance | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857182917&doi=10.1080%2f14697688.2010.497493&partnerID=40&md5=e2f7d206fb88ff2662c3beb0ef2de1e3 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1080/14697688.2010.497493 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_14697688_v12_n2_p249_Merener |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14697688_v12_n2_p249_Merener |y Registro en la Biblioteca Digital |
| 961 | |a paper_14697688_v12_n2_p249_Merener |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 84443 | ||