Swap rate variance swaps

We study the hedging and valuation of generalized variance swaps defined on a forward swap interest rate. Our motivation is the fundamental role of variance swaps in the transfer of variance risk, and the extensive empirical evidence documenting that the variance realized by interest rates is stocha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Merener, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2012
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07010caa a22006857a 4500
001 PAPER-23490
003 AR-BaUEN
005 20230518205512.0
008 190411s2012 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-84857182917 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Merener, N. 
245 1 0 |a Swap rate variance swaps 
260 |c 2012 
270 1 0 |m Merener, N.; Business School, Universidad Torcuato Di Tella, 1010 Saenz Valiente, Buenos Aires 1428, Argentina; email: nmerener@utdt.edu 
506 |2 openaire  |e Política editorial 
504 |a Albanese, C., Lo, H., Mijatovic, A., Spectral methods for volatility derivatives (2009) Quant. Finance, 9 (6), pp. 663-692 
504 |a Andersen, T., Lund, J., Estimating continuous-time stochastic volatility models of the short-term interest rate (1997) J. Econometr., 77 (2), pp. 343-377 
504 |a Ball, C.A., Torous, W.N., The stochastic volatility of short-term interest rates: Some international evidence (2000) J. Finance, 54 (6), pp. 2339-2359 
504 |a Breeden, D., Litzenberger, R., Prices of state contingent claims implicit in option prices (1978) J. Business, 51, pp. 621-651 
504 |a Brigo, D., Mercurio, F., (2006) Interest Rate Models - Theory and Practice, , New York: Springer 
504 |a Broadie, M., Jain, A., Pricing and hedging volatility derivatives (2008) J. Deriv., 15 (3), pp. 7-24 
504 |a Carr, P., Lee, R., (2008) Robust replication of volatility derivatives, , www.math.uchicago.edu/~rl, Working Paper,. Available online at: 
504 |a Carr, P., Lee, R., (2008) Hedging variance options on continuous semimartingales, , www.math.uchicago.edu/~rl, Working Paper,. Available online at 
504 |a Carr, P., Lewis, K., Corridor variance swaps (2004) Risk, pp. 67-72 
504 |a Carr, P., Madan, D., Towards a theory of volatility trading (1998) Volatility: New Estimation Techniques for Pricing Derivatives, pp. 417-427. , In: Jarrow R, editors London: Risk Publications 
504 |a Carr, P., Madan, D., Geman, H., Yor, M., Pricing options on realized variance (2005) Finance Stochast., 9, pp. 453-475 
504 |a Carr, P., Wu, L., Variance risk premiums (2008) Rev. Financial Stud., 22 (3), pp. 1311-1341 
504 |a Demeterfi, K., Derman, E., Kamal, M., Zou, J., (1999) More than you ever wanted to know about volatility swaps, , Goldman Sachs, Quantitative Strategies Research Notes 
504 |a Dupire, B., Model art (1993) Risk, 9, pp. 118-120 
504 |a Gray, S.F., Modeling the conditional distribution of interest rates as a regime-switching process (1996) J. Financial Econ., 9, pp. 27-62 
504 |a Heath, D., Jarrow, R., Morton, A., Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuation (1992) Econometrica, 60, pp. 77-105 
504 |a Howison, S., Rafailidis, A., Rasmussen, H., On the pricing and hedging of volatility derivatives (2004) Appl. Math. Finance, 11, pp. 317-346 
504 |a Javaheri, A., Wilmott, P., Haug, E., GARCH and volatility swaps (2004) Quant. Finance, 4, pp. 589-595 
504 |a Johannes, M., The statistical and economic role of jumps in interest rates (2004) J. Finance, 59, pp. 227-260 
504 |a Karatzas, I., Shreve, S., (1991) Brownian Motion and Stochastic Calculus, , Berlin: Springer 
504 |a Lee, R., Gamma swap (2010) Encyclopedia of Quantitative Finance, , (Wiley Online Library) 
504 |a Lee, R., Weighted variance swap (2010) Encyclopedia of Quantitative Finance, , (Wiley Online Library) 
504 |a Little, T., Pant, V., A finite-difference method for the valuation of variance swaps (2001) J. Comput. Finance, 5, p. 1 
504 |a Medvegyev, P., (2007) Stochastic Integration Theory, , Oxford: Oxford University Press 
504 |a Merener, N., Libor volatility derivatives (2009) Modelling Interest Rates, , In: Mercurio F, editors London: Risk Books 
504 |a Musiela, M., Rutkowski, M., (1997) Martingale Methods in Financial Modeling, , New York: Springer 
504 |a Neuberger, A., Volatililty trading (1990) Working Paper, London Business School 
504 |a Protter, P., (1990) Stochastic Integration and Differential Equations, , Berlin: Springer 
504 |a Stakgold, I., (1997) Green's Functions and Boundary Value Problems, , New York: Wiley-Interscience 
504 |a Windcliff, H., Forsyth, P.A., Vetzal, K.R., Pricing methods and hedging strategies for volatility derivatives (2006) J. Bank. Finance, 30, pp. 409-431 
520 3 |a We study the hedging and valuation of generalized variance swaps defined on a forward swap interest rate. Our motivation is the fundamental role of variance swaps in the transfer of variance risk, and the extensive empirical evidence documenting that the variance realized by interest rates is stochastic. We identify a hedging rule involving a static European contract and the gains of a dynamic position on forward interest rate swaps. Two distinguishing features arise in the context of interest rates: the nonlinear and multidimensional relationship between the values of the dynamically traded contracts and the underlying swap rate, and the possible stochasticity of the interest rate at which gains are reinvested. The combination of these two features leads to additional terms in the cumulative dynamic trading gains, which depend on realized variance and are taken into consideration in the determination of the appropriate static hedge. We characterize the static payoff function as the solution of an ordinary differential equation, and derive explicitly the associated dynamic strategy. We use daily interest rate data between 1997 and 2007 to test the effectiveness of our hedging methodology in arithmetic and geometric variance swaps and verify that the hedging error is small compared with the bid-ask spread in swaption prices. © 2012 Taylor and Francis Group, LLC.  |l eng 
593 |a Business School, Universidad Torcuato Di Tella, 1010 Saenz Valiente, Buenos Aires 1428, Argentina 
690 1 0 |a DERIVATIVES HEDGING 
690 1 0 |a INTEREST RATE DERIVATIVES 
690 1 0 |a STOCHASTIC VOLATILITY 
690 1 0 |a VOLATILITY MODELLING 
773 0 |d 2012  |g v. 12  |h pp. 249-261  |k n. 2  |p Quant. Financ.  |x 14697688  |t Quantitative Finance 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84857182917&doi=10.1080%2f14697688.2010.497493&partnerID=40&md5=e2f7d206fb88ff2662c3beb0ef2de1e3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1080/14697688.2010.497493  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14697688_v12_n2_p249_Merener  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14697688_v12_n2_p249_Merener  |y Registro en la Biblioteca Digital 
961 |a paper_14697688_v12_n2_p249_Merener  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84443