Neuronal plasticity and antidepressants in the diabetic brain

The hippocampus, a limbic structure linked to higher brain functions, appears vulnerable in diabetic subjects that have a higher risk of stroke, dementia, and cognitive decline. The dentate gyrus (DG) of the hippocampus is one of the limited neurogenic brain areas during adulthood; neurons born in t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Beauquis, J.
Otros Autores: Roig, P., De Nicola, A.F, Saravia, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Inc. 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12165caa a22013097a 4500
001 PAPER-23282
003 AR-BaUEN
005 20230518205456.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-60349127344 
024 7 |2 cas  |a fluoxetine, 54910-89-3, 56296-78-7, 59333-67-4 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a ANYAA 
100 1 |a Beauquis, J. 
245 1 0 |a Neuronal plasticity and antidepressants in the diabetic brain 
260 |b Blackwell Publishing Inc.  |c 2009 
270 1 0 |m Saravia, F.; Institute of Biology and Experimental Medicine, National Research Council (CONICET), Obligado 2490, 1428 Buenos Aires, Argentina; email: fsaravia@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Selvarajah, D., Tesfaye, S., Central nervous system involvement in diabetes mellitus (2006) Curr. Diab. Rep., 6, pp. 431-438. , & 
504 |a Mijnhout, G.S., Diabetic encephalopathy: A concept in need of a definition (2006) Diabetologia, 49, pp. 1447-1448 
504 |a Northam, E.A., Rankins, D., Cameron, F., Therapy insight: The impact of type 1 diabetes on brain development and function (2006) Nat. Clin. Pract. Neurol., 2, pp. 78-86. , & 
504 |a Gardoni, F., Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats (2002) J. Neurochem., 80, pp. 438-447 
504 |a Valastro, B., Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus (2002) Diabetologia, 45, pp. 642-650 
504 |a Revsin, Y., Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes (2005) Brain Res., 1038, pp. 22-31 
504 |a Saravia, F., Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: The nonobese diabetic (NOD) and streptozotocin-treated mice (2002) Brain Res., 957, pp. 345-353 
504 |a Biessels, G.J., Water maze learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: Effects of insulin treatment (1998) Brain Res., 800, pp. 125-135 
504 |a Biessels, G.J., Gispen, W.H., The impact of diabetes on cognition: What can be learned from rodent models? (2005) Neurobiol. Aging, 26 (1), pp. 36-41. , & 
504 |a Biessels, G., Cerebral function in diabetes mellitus (1994) Diabetologia, 37, pp. 643-650 
504 |a Ming, G.L., Song, H., Adult neurogenesis in the mammalian central nervous system (2005) Annu. Rev. Neurosci., 28, pp. 223-250. , & 
504 |a Cameron, A., Hazel, T., McKay, R., Regulation of neurogenesis by growth factors and neurotransmitters (1998) J. Neurobiol., 36, pp. 287-306. , & 
504 |a Cameron, H., McKay, R., Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus (2001) J. Comp. Neurol., 435, pp. 406-417. , & 
504 |a Duman, R., Malberb, J., Nakagawa, S., D'Sa, C., Neuronal plasticity and survival in mood disorders (2000) Biol. Pychiatry, 46, pp. 1181-1191. , & 
504 |a Gage, F., Neurogenesis in the adult brain (2002) J. Neurosci., pp. 612-613 
504 |a Gould, E., Cameron, H.A., Regulation of neuronal birth, migration and death in the rat dentate gyrus (1996) Dev. Neurosci., 18, pp. 22-35. , & 
504 |a Kempermann, G., Kuhn, H., Gage, F., More hippocampal neurons in adult mice living in an enriched environment (1997) Nature, 386, pp. 493-495. , & 
504 |a Van Praag, H., Kempermann, G., Gage, F., Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus (1999) Nat. Neurosci., 2, pp. 266-270. , & 
504 |a Van Praag, H., Functional neurogenesis in the adult hippocampus (2002) Nature, 415, pp. 1030-1034 
504 |a Saravia, F.E., Neuroprotective effects of estradiol in hippocampal neurons and glia of middle age mice (2007) Psychoneuroendocrinology, 32, pp. 480-492 
504 |a Madsen, T., Increased neurogenesis in a model of electroconvulsive therapy (2000) Biol. Psychiatry, 47, pp. 1043-1049 
504 |a Saravia, F.E., Hippocampal neuropathology of diabetes mellitus is relieved by estrogen treatment (2006) Cell. Mol. Neurobiol., 26, pp. 941-955 
504 |a Saravia, F., Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice (2004) J. Neuroendocrinol., 16, pp. 704-710 
504 |a Beauquis, J., Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: Reversion by antidepressant treatment (2006) Eur. J. Neurosci., 23, pp. 1539-1546 
504 |a Beauquis, J., Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse (2007) Exp. Neurol., 210, pp. 359-367 
504 |a Jacobs, B., Adult brain neurogenesis and depression (2002) Brain Behav. Immun., 16, pp. 602-609 
504 |a Kempermann, G., Regulation of adult hippocampal neurogenesis-implications for novel theories of major depression (2002) Bipolar Disorders, 4, pp. 17-33 
504 |a Duman, R., Malberb, J., Nakagawa, S., Regulation of adult neurogenesis by psychotropic drugs and stress (2001) J. Pharmacol. Exp. Ther., 299, pp. 401-407. , & 
504 |a Santarelli, L., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants (2003) Science, 301, pp. 805-809 
504 |a Malberg, J., Implications of adult hippocampal neurogenesis in antidepressant action (2004) Rev. Psychiatric Neurosci., 29, pp. 196-205 
504 |a Katon, W., Behavioral and clinical factors associated with depression among individuals with diabetes (2004) Diabetes Care, 27, p. 914 
504 |a Lustman, P., Depression in adults with diabetes (1992) Diabetes Care, 15, pp. 1631-1639 
504 |a McEwen, B., Magariños, A., Reagan, L., Studies of hormone action in the hippocampal formation. Possible relevance to depression and diabetes (2002) J. Psychosomatic Res., 53, pp. 883-890. , & 
504 |a Barber, M., Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin (2003) Brain Res., 964, pp. 128-135 
504 |a Gispen, W., Biessels, G., Cognition and synaptic plasticity in diabetes mellitus (2000) Trends Neurosci., 23, pp. 542-549. , & 
504 |a Mijnhout, G.S., Diabetic encephalopathy: A concept in need of a definition (2006) Diabetologia, 49, pp. 1447-1448 
504 |a Schwartz, M.W., Porte Jr., D., Diabetes, obesity, and the brain (2005) Science, 307, pp. 375-379. , & 
504 |a Kempermann, G., Kronenberg, G., Depressed new neurons-adult neurogenesis and a cellular plasticity hypothesis of major depression (2003) Biol. Pychiatry, 54, pp. 499-503. , & 
504 |a Kamal, A., Hippocampal synaptic plasticity in streptozotocin-diabetic rats: Interaction of diabetes and ageing (1999) Neuroscience, 90, pp. 737-745 
504 |a Revsin, Y., Adrenal hypersensitivity precedes chronic hypercorticism in streptozotocin-induced diabetes mice (2008) Endocrinology, 149, pp. 3531-3539 
504 |a Magariños, A., McEwen, B., Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 11056-11061. , & 
504 |a Homo-Delarche, F., Sex steroids, glucocorticoids, stress and autoimmunity (1991) J. Steroid Biochem. Mol. Biol., 40, pp. 619-637 
504 |a Stranahan, A.M., Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons (2008) Nat. Neurosci., 11, pp. 309-317 
504 |a Revsin, Y., Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice (2008) Neuropsychopharmacology, , 1-12 Sept. 10 [Epub ahead of print] 
520 3 |a The hippocampus, a limbic structure linked to higher brain functions, appears vulnerable in diabetic subjects that have a higher risk of stroke, dementia, and cognitive decline. The dentate gyrus (DG) of the hippocampus is one of the limited neurogenic brain areas during adulthood; neurons born in the DG are involved in some types of learning and memory processes. We found a decrease in the ability for proliferation and neuronal differentiation of newborn cells, measured by bromodeoxyuridine incorporation in the DG, from streptozotocin-induced diabetic mice. The hilar region, formed by mature neurons presenting higher sensitivity to brain damage, showed a reduced neuronal density in diabetic mice with respect to vehicle-treated mice. Interestingly, in a spontaneous model of type 1 diabetes, we corroborated a decrease in the rate of neurogenesis in the nonobese diabetic mice compared to control strains, and this reduction was also found during the prediabetic stage. The antidepressant fluoxetine administered over a period of 10 days to diabetic mice was effective in preventing changes in proliferation and differentiation of new neurons. Confocal microscope studies, including using neuronal and glial markers, suggested that differentiation toward a neuronal phenotype was decreased in diabetic animals and was reversed by the antidepressant treatment. In addition, the loss of hilar neurons was avoided by fluoxetine treatment. Several reports have demonstrated that high susceptibility to stress and elevated corticosterone levels are detrimental to neurogenesis and contribute to neuronal loss. These features are common in some types of depression, diabetes, and aging processes, suggesting they participate in the reported hippocampal abnormalities present in these conditions. © 2009 New York Academy of Sciences.  |l eng 
593 |a Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine, National Research Council, Buenos Aires, Argentina 
593 |a Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina 
593 |a Institute of Biology and Experimental Medicine, National Research Council (CONICET), Obligado 2490, 1428 Buenos Aires, Argentina 
690 1 0 |a DENTATE GYRUS 
690 1 0 |a FLUOXETINE 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a NEUROGENESIS 
690 1 0 |a TYPE 1 DIABETES 
690 1 0 |a ANTIDEPRESSANT AGENT 
690 1 0 |a FLUOXETINE 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a BRAIN DAMAGE 
690 1 0 |a BRAIN DISEASE 
690 1 0 |a CELL DENSITY 
690 1 0 |a CELL DIFFERENTIATION 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CONFERENCE PAPER 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CORTICOSTERONE BLOOD LEVEL 
690 1 0 |a DENTATE GYRUS 
690 1 0 |a DIABETES MELLITUS 
690 1 0 |a DRUG EFFECT 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a INSULIN DEPENDENT DIABETES MELLITUS 
690 1 0 |a LIMBIC CORTEX 
690 1 0 |a MOUSE 
690 1 0 |a NERVE CELL 
690 1 0 |a NERVE CELL PLASTICITY 
690 1 0 |a NONHUMAN 
690 1 0 |a PHENOTYPE 
690 1 0 |a STREPTOZOCIN DIABETES 
690 1 0 |a STRESS 
690 1 0 |a ANIMALIA 
690 1 0 |a MUS 
700 1 |a Roig, P. 
700 1 |a De Nicola, A.F. 
700 1 |a Saravia, F. 
773 0 |d Blackwell Publishing Inc., 2009  |g v. 1153  |h pp. 203-208  |p Ann. New York Acad. Sci.  |x 00778923  |w (AR-BaUEN)CENRE-1541  |z 9781573317467  |t Annals of the New York Academy of Sciences 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-60349127344&doi=10.1111%2fj.1749-6632.2008.03983.x&partnerID=40&md5=f6aa0b71b491f4749b8ecdb36e77f0b6  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1749-6632.2008.03983.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00778923_v1153_n_p203_Beauquis  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00778923_v1153_n_p203_Beauquis  |y Registro en la Biblioteca Digital 
961 |a paper_00778923_v1153_n_p203_Beauquis  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 84235