Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: Comment on Burgess and Dawson (2008)

Sap flow sensors are uniquely able to continuously monitor whole tree physiology. Recently, Burgess and Dawson (Burgess SSO, Dawson TE, Plant Soil 305:5-13, 2008) urged caution in using sap flow probes to estimate water storage use in trees. Here we respond to three criticisms raised there: (1) Samp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Phillips, N.G
Otros Autores: Scholz, F.G, Bucci, S.J, Goldstein, G., Meinzer, F.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13806caa a22012137a 4500
001 PAPER-23237
003 AR-BaUEN
005 20230518205453.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-58149388071 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLSOA 
100 1 |a Phillips, N.G. 
245 1 0 |a Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: Comment on Burgess and Dawson (2008) 
260 |c 2009 
270 1 0 |m Phillips, N. G.; Department of Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, United States; email: nathan@bu.edu 
506 |2 openaire  |e Política editorial 
504 |a Aumann, C.A., Ford, E.D., Modeling tree water flow as an unsaturated flow through a porous medium (2002) J Theor Biol, 219, pp. 415-429 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P., Scholz, F.G., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees (2005) Trees, 19, pp. 296-304 
504 |a Burgess, S.S.O., Adams, M.A., Turner, N.C., Ong, C.K., The redistribution of soil water by tree root systems (1998) Oecologia, 115, pp. 306-311 
504 |a Burgess, S.S.O., Dawson, T.E., Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: A caution (2008) Plant Soil, 305, pp. 5-13 
504 |a Cermak, J., Kucera, J., Bauerle, W.L., Phillips, N., Hinckley, T.M., Tree water storage and its diurnal dynamics related to sap flow and changes of stem volume in old-growth Douglas-fir trees (2007) Tree Physiol, 27, pp. 181-198 
504 |a Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., Water relations of baobab trees (Adansonia spp. L.) during the rainy season: Does stem water buffer daily water deficits? (2006) Plant Cell Environ, 29, pp. 1021-1032 
504 |a Chuang, Y.L., Oren, R., Bertozzi, A.L., Phillips, N., Katul, G.G., The porous media model for the hydraulic system of a conifer tree: Linking sap flux data to transpiration rate (2005) Ecol Model, 191, pp. 447-468 
504 |a Do, F., Rocheteau, A., Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes. 2. Advantages and calibration of a noncontinuous heating system (2002) Tree Physiol, 22, pp. 649-654 
504 |a Gartner, B.L., Gartner, B.L., Patterns of xylem variation within a tree and their hydraulic and mechanical consequences Ch 6 (1995) Plant Stems, Physiology and Functional Morphology, pp. 125-148. , Academic San Diego 
504 |a Goldstein, G., Andrade, J.L., Meinzer, F.C., Holbrook, N.M., Cavelier, J., Jackson, P., Celis, A., Stem water storage and diurnal patterns of water use in tropical forest canopy trees (1998) Plant Cell Environ, 21, pp. 397-406 
504 |a Hellkvist, J., Richards, G.P., Jarvis, P.G., Vertical gradients of water potential and tissue water relations in sitka spruce trees measured with the pressure chamber (1974) J Appl Ecol, 11, pp. 637-667 
504 |a Hinckley, T.M., Bruckerhoff, D.N., The effects of drought on water relations and stem shrinkage of Quercus alba (1975) Can J Bot, 53, pp. 62-72 
504 |a Holbrook, N.M., Sinclair, T.R., Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage (1992) Plant Cell Environ, 15, pp. 401-409 
504 |a Hollinger, D.Y., Kelliher, F.M., Schulze, E.-D., Köstner, B.M.M., Coupling of tree transpiration to atmospheric turbulence (1994) Nature, 371, pp. 60-62 
504 |a Hunt, E.R., Running, S.W., Federer, C.A., Extrapolating plant water flow resistances and capacitances to regional scales (1991) Agric for Meteorol, 54, pp. 169-195 
504 |a Irvine, J., Grace, J., Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood (1997) Planta, 202, pp. 455-461 
504 |a Jones, H.G., (1992) Plants and Microclimate, p. 428. , 2 Cambridge University Press Cambridge 
504 |a Klepper, B., Browning, V.D., Taylor, H.M., Stem diameter in relation to plant water status (1971) Plant Physiol, 48, pp. 683-685 
504 |a Leverenz, J., Deans, J.D., Ford, E.D., Jarvis, P.G., Milen, R.S., Whitehead, D., Systematic spatial variation of stomatal conductance in a Sitka spruce plantation (1982) J Appl Ecol, 19, pp. 835-851 
504 |a Meinzer, F.C., James, S.A., Goldstein, G., Woodruff, D., Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees (2003) Plant Cell Environ, 26, pp. 1147-1155 
504 |a Meinzer, F.C., James, S.A., Goldstein, G., Dynamics of transpiration, sap flow and use of stored water in tropical forest canopy trees (2004) Tree Physiol, 24, pp. 901-909 
504 |a Meinzer, F.C., Brooks, J.R., Domec, J.C., Gartner, B.L., Warren, J.L., Woodruff, D., Bible, K., Shaw, D.C., Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques (2006) Plant Cell Environ, 29, pp. 105-114 
504 |a Meinzer, F.C., Woodruff, D.R., Domec, J.C., Goldstein, G., Campanello, P.I., Gatti, M.G., Villalobos-Vega, R., Coordination of leaf and stem water transport properties in tropical forest trees (2008) Oecologia, 156, pp. 31-41 
504 |a Molz, F.J., Klepper, B., Radial propagation of water potential in stems (1972) Agron J, 64, pp. 469-473 
504 |a Nobel, P.S., (1970) Introduction to Biophysical Plant Physiology, p. 488. , Freeman San Francisco 
504 |a Perämäki, M., Vesala, T., Nikinmaa, E., Modeling the dynamics of pressure propagation and diameter variation in tree sapwood (2005) Tree Physiol, 25, pp. 1091-1099 
504 |a Phillips, N., Nagchaudhuri, A., Oren, R., Katul, G., Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow (1997) Trees, 11, pp. 412-419 
504 |a Phillips, N., Oren, R., Zimmermann, R., Wright, S.J., Temporal patterns of water flux in trees and lianas in a Panamanian moist forest (1999) Trees, 14, pp. 116-123 
504 |a Phillips, N.G., Ryan, M.G., Bond, B.J., McDowell, N.G., Hinckley, T.M., Cermak, J., Reliance on stored water increases with tree size in three species in the Pacific Northwest (2003) Tree Physiol, 23, pp. 237-245 
504 |a Phillips, N.G., Oren, R., Licata, J., Linder, S., Time series diagnosis of tree hydraulic characteristics (2004) Tree Physiol, 24, pp. 879-890 
504 |a Richter, H., Frictional potential losses and total water potential in plants: A re-evaluation (1973) J Exp Bot, 24, pp. 983-994 
504 |a Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Hydraulic redistribution of soil water by neotropical savanna trees (2002) Tree Physiol, 22, pp. 660-612 
504 |a Scholz, F.B., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant Cell Environ, 30, pp. 236-248 
504 |a Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Temporal dynamics of stem expansion and contraction in savanna trees: Withdrawal and recharge of stored water (2008) Tree Physiol, 28, pp. 469-480 
504 |a Sevanto, S., Vesela, T., Perämäki, M., Nikinmaa, E., Time lags for xylem and stem diameter variations in a Scots pine tree (2002) Plant Cell Environ, 25, pp. 1071-1077 
504 |a Sevanto, S., Nikinmaa, E., Riikonen, A., Daley, M., Pettijohn, J.C., Mikkelsen, T.N., Phillips, N., Holbrook, N.M., Linking xylem diameter variations with sap flow measurements (2008) Plant Soil, 305, pp. 77-90 
504 |a Sheriff, D.W., Significance of the occurrence of time lags in the transmission of hydraulic shock waves through plant stems (1973) J Exp Bot, 24, pp. 796-803 
504 |a Stratton, L., Goldstein, G., Meinzer, F.C., Stem water storage capacity and efficiency of water transport: Their functional significance in a Hawaiian dry forest (2000) Plant Cell Environ, 23, pp. 99-106 
504 |a Tatarinov, F.A., Kucera, J., Cienciala, E., The analysis of physical background of tree sap flow measurement based on thermal methods (2005) Meas Sci Technol., 16, pp. 1157-1169 
504 |a Tyree, M.T., Yang, S., Water storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms: The contribution of capillary water and cavitation (1990) Planta, 182, pp. 420-426 
504 |a Tyree, M.T., Zimmermann, M.H., (2002) Xylem Structure and the Ascent of Sap, p. 48. , 2 Berlin Heidelberg New York 
504 |a Van Den Honert, T.H., Water transport in plants as a catenary process (1948) Disc Faraday Soc, 3, pp. 146-153 
504 |a Vité, J.P., Rudinsky, J.A., The water-conducting systems in conifers and their importance to the distribution of trunk injected chemicals (1959) Contr. Boyce Thompson Inst., 20, pp. 27-38 
504 |a Waring, R.H., Running, S.W., Sapwood water storage: Its contribution to transpiration and effects upon the water conductance through the stems of old-growth Douglas fir (1978) Plant Cell Environ, 1, pp. 131-140 
504 |a Waring, R.H., Whitehead, D., Jarvis, P.J., The contribution of stored water to transpiration in Scots pine (1978) Plant Cell Environ, 2, pp. 309-317 
520 3 |a Sap flow sensors are uniquely able to continuously monitor whole tree physiology. Recently, Burgess and Dawson (Burgess SSO, Dawson TE, Plant Soil 305:5-13, 2008) urged caution in using sap flow probes to estimate water storage use in trees. Here we respond to three criticisms raised there: (1) Sampling: that tree water storage, estimated from branch-bole sap flow lags, was compromised by unaccounted variation in branch position and orientation; (2) Instrumentation: that sap flow sensor response times may be sensor artefacts rather than manifestations of tree water storage; and (3) Theory: that tree water storage estimates are based on a faulty concept of lag phenomena in sap flow that persists in the literature. We agree with the need for caution in sap flow-based estimates of plant water storage, but here correct flaws in arguments and representations of studies presented in Burgess and Dawson (Burgess SSO, Dawson TE, Plant Soil 305:5-13, 2008). © 2008 Springer Science+Business Media B.V.  |l eng 
536 |a Detalles de la financiación: Universidad Nacional de San Juan 
536 |a Detalles de la financiación: 0517521 
536 |a Detalles de la financiación: University of Western Sydney, 71827 
536 |a Detalles de la financiación: F.G.Scholz . S. J. Bucci Comision Nacional de Investigaciones Cientificas y Tecnicas (CONICET) and Laboratorio de Ecologia Funcional, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina 
536 |a Detalles de la financiación: Acknowledgements We thank David Tissue and Thomas Hinckley for suggestions that improved the clarity of this manuscript, and review comments of Stephen Burgess and three other anonymous reviewers. This manuscript was prepared during a sabbatical visit by NP to the University of Western Sydney, supported by International Research Initiatives Scheme Grant number 71827, and a U.S. National Science Foundation grant (No. 0517521). 
593 |a Department of Geography and Environment, Boston University, 675 Commonwealth Avenue, Boston, MA 02215, United States 
593 |a Centre for Plant and Food Science, University of Western Sydney, Richmond, NSW 2753, Australia 
593 |a Comision Nacional de Investigaciones Cientificas Y Tecnicas (CONICET), Laboratorio de Ecologia Funcional, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina 
593 |a CONICET, Laboratorio de Ecología Funcional, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina 
593 |a Department of Biology, University of Miami, P.O. Box 249118, Coral Gables, FL 33124, United States 
593 |a US Department of Agriculture Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, United States 
690 1 0 |a BRANCH SAP FLOW 
690 1 0 |a CAPACITANCE 
690 1 0 |a COHESION-TENSION THEORY 
690 1 0 |a FLOW LAGS 
690 1 0 |a HEAT BALANCE GAUGE 
690 1 0 |a HEAT PULSE 
690 1 0 |a HEAT STORAGE 
690 1 0 |a STEM WATER STORAGE 
690 1 0 |a THERMAL DISSIPATION PROBE 
690 1 0 |a WATER TRANSPORT 
690 1 0 |a ARTIFACT 
690 1 0 |a COHESION 
690 1 0 |a DISSIPATION 
690 1 0 |a HEAT BALANCE 
690 1 0 |a SAMPLING 
690 1 0 |a SAP FLOW 
690 1 0 |a TENSION 
690 1 0 |a WATER STORAGE 
700 1 |a Scholz, F.G. 
700 1 |a Bucci, S.J. 
700 1 |a Goldstein, G. 
700 1 |a Meinzer, F.C. 
773 0 |d 2009  |g v. 315  |h pp. 315-324  |k n. 1-2  |p Plant Soil  |x 0032079X  |t Plant and Soil 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149388071&doi=10.1007%2fs11104-008-9741-y&partnerID=40&md5=3f0a16abeea3574f48561b3c5b5b6840  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s11104-008-9741-y  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0032079X_v315_n1-2_p315_Phillips  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0032079X_v315_n1-2_p315_Phillips  |y Registro en la Biblioteca Digital 
961 |a paper_0032079X_v315_n1-2_p315_Phillips  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84190