UV-A (315-400 nm) irradiance from measurements at 380 nm for solar water treatment and disinfection: Comparison between model and measurements in Buenos Aires, Argentina and Almería, Spain

A linear correlation between UV-A and 380 nm was developed by means of the TUV 4.1 radiative transfer model. The prediction error of the correlation was evaluated with data from Buenos Aires, Argentina, 2001, and from 2006, Almería, Spain. Percent random mean square error (RMSE%) was calculated for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Navntoft, C.
Otros Autores: Dawidowski, Laura Elena, Blesa, M.A, Fernández-Ibañez, P., Wolfram, E.A, Paladini, Alejandro Alberto
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10683caa a22011297a 4500
001 PAPER-23236
003 AR-BaUEN
005 20250807141504.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-58149204221 
030 |a SRENA 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Navntoft, C. 
245 1 0 |a UV-A (315-400 nm) irradiance from measurements at 380 nm for solar water treatment and disinfection: Comparison between model and measurements in Buenos Aires, Argentina and Almería, Spain 
260 |c 2009 
270 1 0 |m Navntoft, C.; Unidad de Actividad Química, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499, B1650KNA San Martín, Argentina; email: navntoft@cnea.gov.ar 
504 |a Bais, A.F., Madronich, S., Crawford, J., Hall, S.R., Mayer, B., Van Weele, M., Lnobl, J., Schmitt, R., International photolysis frequency measurement and model intercomparison (IPMMI): spectral actinic solar flux measurements and modeling (2003) Journal of Geophysical Research, 108 (D16), p. 8543 
504 |a Bernhard, G., Booth, C.R., Ehramjian, C., 2000. Real-time UV and Column Ozone from Multi-channel UV Radiometers Deployed in the National Science Foundation's UV Monitoring Network. Available from: <http://www.biospherical.com>; Blesa, M.A., Blanco, J.G., 2005. Solar Safe Water: Solar Technologies for Water Decontamination and Disinfection (Solar Safe Water: Tecnologías solares para la desinfección y descontaminación del agua), Unsam, Buenos Aires. Available from: <http://www.psa.es/webeng/projects/solarsafewater/index.html>; Cañada, J., Pedros, G., Bosca, J.V., Relationships between UV (0.295-0.385 μm) and broadband solar radiation hourly values in Valencia and Córdoba, Spain (2003) Energy, 28, pp. 199-217 
504 |a Diaz, S., Booth, R., Amstrong, R., Cabrera, S., Cassiccia, C., Fuenzilda, H., Lovengreen, C., Paladini, A., Pedroni, J., Rosales, A., Zagarese, H., Brunat, C., Deferrari, G., Camilion, C., Vernet, M., 2002. Calibration improvement of the IAI Network for the measurement of UVR: multi-channel instruments. In: Proceedings of SPIE. Ultraviolet Ground- and Space-based Measurements, Models and Effects II, vol. 4896. Hangzhou, China, pp. 106-113; Fuenzilda, H.A., Global ultraviolet spectra derived directly from observations with multichannel radiometers (1998) Applied Optics, 37 (33) 
504 |a Ibáñez, J.A., Litter, M.I., Pizarro, R.A., Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (-) bacteria (2003) J. Photochem. Photobiol. A: Chem., 157, pp. 81-85 
504 |a Iqbal, M., (1983) An Introduction to Solar Radiation, , Academic Press, New York 
504 |a Koronakis, P.S., Sfantos, G.K., Paliatsos, A.G., Kaldellis, J.K., Garofalakis, J.E., Koronakis, I.P., Interrelations of UV-global/global/diffuse solar irradiance components and UV-global attenuation on air pollution episode days in Athens, Greece (2002) Atmospheric Environment, 36, pp. 3173-3181 
504 |a Kudish, A.I., Lyubansky, V., Evseev, E.G., Ianetz, A., Inter-comparison of the solar UVB, UVA and global radiation clearness and UV indice for Beer Sheva and Neve Zohar (Dead Sea), Israel (2005) Energy, 30, pp. 1623-1641 
504 |a Madronich, S., Flocke, S., Theoretical estimation of biologically effective UV radiation at the earth's surface (1995) Solar Ultraviolet Radiation, Modelling Measurements and Effects, pp. 23-63. , Zerefos C.S., and Bais A.F. (Eds), Springer, Berlin 
504 |a Malato, S., Blanco, J., Richter, C., Maldonado, M.I., Optimization of pre-industrial solar photocatalytic mineralization of commercial pesticides (2000) Applied Catalysis B: Environment, 25, pp. 31-33 
504 |a Mayer, B., Kylling, A., Madronich, S., Seckmayer, G., Enhanced absorption of UV radiation due to multiple scattering in clouds. Experimental evidence and theoretical explanation (1998) Journal of Geophysical Research, 103 (D23), pp. 31241-31254 
504 |a McLoughlin, O.A., Fernández Ibáñez, P., Gernjak, W., Malato Rodríguez, S., Gill, L.W., Photocatalytic disinfection of water using low cost compound parabolic collectors (2004) Solar Energy, 77 (5), pp. 625-633 
504 |a Ogunjobi, K.O., Kim, Y.J., Ultraviolet (0.28-0.4 μm) and broadband solar hourly radiation at Kwangju, South Korea: analysis of their correlation with aerosol optical depth and clearness index (2004) Atmospheric Research, 71, pp. 193-214 
504 |a Otero, A.L., Ristori, P.R., Fochesatto, G.J., Quel, E.J., Holben, B., 2003. Statistics of the evolution of aerosols measured with the stations of the aeronet network in Argentina since 1999 (Estadística de la evolución de los aerosoles medidos en las estaciones de la red aeronet en argentina desde 1999). In: Proceedings of the Argentine Association of Physics, AFA Journal (Anales AFA), vol. 15 (Pinto 339, Tandil, Buenos Aires, Argentina). See also: <http://www.unicen.edu.ar/crecic/analesafa/>; Palancar, G.G., Toselli, M.B., Effects of meteorology on the annual and interannual cycle of the UV-B and total radiation in Córdoba City, Argentina (2004) Atmospheric Environment, 38, pp. 1073-1082 
504 |a Pérez-Estrada, L.A., Maldonado, M.I., Gernjak, W., Agüera, A., Fernández-Alba, A.R., Ballesteros, M.M., Malato, S., Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale (2005) Catalysis Today, 101, pp. 219-226 
504 |a Piacentini, R.D., Cede, A., Bárcena, H., Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high altitude desertic plateau Puna of Atacama (Argentina) (2003) Journal of Atmospheric and Solar Terrestrial Physics, 65, pp. 727-731 
504 |a Schiavello, M., (1985) Photoelectrochemistry, Photocatalysis and Photoreactors Fundamentals and Developments, , Springer, Berkeley 
504 |a Tchoganoblus, G., Crites, R., (2000) Small and Decentralized Wastewater Management Systems, , McGraw Hill, Bogotá pp. 241-344 
504 |a Tribusch, H., Feasibility of toxic chemical waste processing in large scale solar installations (1989) Solar Energy, 43 (3), pp. 139-143 
504 |a Vidal, A., Díaz, A.I., El, H., Romero, M., Muguruza, I., Senhaji, F., Gonzalez, J., Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies (1999) Catalysis Today, 54 (2-3), pp. 283-290 
506 |2 openaire  |e Política editorial 
520 3 |a A linear correlation between UV-A and 380 nm was developed by means of the TUV 4.1 radiative transfer model. The prediction error of the correlation was evaluated with data from Buenos Aires, Argentina, 2001, and from 2006, Almería, Spain. Percent random mean square error (RMSE%) was calculated for intervals of 10° of solar zenith angles, ranging 4.75% at 20° to 37.70% at 90° in clear days and 22.16% at 20° to 26.17% at 90° for cloudy days in Buenos Aires Argentina, and 1.27% at 20° to 11.27% at 90° for clear days in Almeria, Spain. Clouded days were not assessed with the data from Spain. In Argentina, the UV-A radiometer is located in a rural area and the 380 nm radiometer is located in an urban area 6 km away. Hence the real error of the proposed model is closer to that found in Spain were both measurements were performed at the same site. The objective of the work is to achieve a simple and precise method to assess UV-A availability for environmental applications of solar energy, particularly for solar water treatment, at any desired latitude. © 2008 Elsevier Ltd. All rights reserved.  |l eng 
593 |a Unidad de Actividad Química, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499, B1650KNA San Martín, Argentina 
593 |a Escuela de Posgrado, Universidad Nacional de San Martín, Peatonal Belgrano 3563, B1650ANQ San Martín, Argentina 
593 |a Plataforma Solar de Almería, Carretera Senes km 4, 04002 Tabernas, Spain 
593 |a Centro de Investigaciones Científicas y Técnicas de las Fuerzas Armadas (CITEFA), San Juan Bautista de La Salle 4397, B1603ALO Villa Martelli, Argentina 
593 |a Instituto de Genética y Biología Molecular, Vuelta de Obligado 2490, CP 1428 Ciudad de Buenos Aires, Argentina 
593 |a Consejo Nacional de investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires, Argentina 
651 4 |a ARGENTINA 
651 4 |a BUENOS AIRES 
651 4 |a BUENOS AIRES , ARGENTINA 
690 1 0 |a 380 NM 
690 1 0 |a COMPARISON 
690 1 0 |a IRRADIANCE 
690 1 0 |a MEASUREMENTS 
690 1 0 |a UV-A 
690 1 0 |a CHEMICALS REMOVAL (WATER TREATMENT) 
690 1 0 |a RADIATIVE TRANSFER 
690 1 0 |a RADIOMETERS 
690 1 0 |a RADIOMETRY 
690 1 0 |a RENEWABLE ENERGY RESOURCES 
690 1 0 |a RURAL AREAS 
690 1 0 |a WATER TREATMENT 
690 1 0 |a WATER TREATMENT PLANTS 
690 1 0 |a 380 NM 
690 1 0 |a ALMERIA , SPAIN 
690 1 0 |a CLOUDY DAYS 
690 1 0 |a COMPARISON 
690 1 0 |a ENVIRONMENTAL APPLICATIONS 
690 1 0 |a IRRADIANCE 
690 1 0 |a LINEAR CORRELATIONS 
690 1 0 |a MEAN SQUARES 
690 1 0 |a PRECISE METHODS 
690 1 0 |a PREDICTION ERRORS 
690 1 0 |a RADIATIVE TRANSFER MODELS 
690 1 0 |a REAL ERRORS 
690 1 0 |a SOLAR ZENITH ANGLES 
690 1 0 |a URBAN AREAS 
690 1 0 |a UV-A 
690 1 0 |a SOLAR ENERGY 
690 1 0 |a CORRELATION 
690 1 0 |a DISINFECTION 
690 1 0 |a RADIATIVE TRANSFER 
690 1 0 |a RADIOMETER 
690 1 0 |a RURAL AREA 
690 1 0 |a SOLAR POWER 
690 1 0 |a ULTRAVIOLET A RADIATION 
690 1 0 |a WATER TREATMENT 
690 1 0 |a ZENITH ANGLE 
700 1 |a Dawidowski, Laura Elena 
700 1 |a Blesa, M.A. 
700 1 |a Fernández-Ibañez, P. 
700 1 |a Wolfram, E.A. 
700 1 |a Paladini, Alejandro Alberto 
773 0 |d 2009  |g v. 83  |h pp. 280-286  |k n. 2  |p Sol. Energy  |x 0038092X  |w (AR-BaUEN)CENRE-6874  |t Solar Energy 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149204221&doi=10.1016%2fj.solener.2008.10.010&partnerID=40&md5=f1bd4465afe3fa6f10acb0e62a782eea  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.solener.2008.10.010  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0038092X_v83_n2_p280_Navntoft  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0038092X_v83_n2_p280_Navntoft  |y Registro en la Biblioteca Digital 
961 |a paper_0038092X_v83_n2_p280_Navntoft  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 84189