Cocaine acute "binge" administration results in altered thalamocortical interactions in mice
Background: Abnormalities in both thalamic and cortical areas have been reported in human cocaine addicts with noninvasive functional magnetic resonance imaging. Given the substantial involvement of the thalamocortical system in sensory processing and perception, we defined electrophysiology-based p...
Guardado en:
Autor principal: | |
---|---|
Otros Autores: | , , , |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
Elsevier USA
2009
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 24545caa a22018977a 4500 | ||
---|---|---|---|
001 | PAPER-23061 | ||
003 | AR-BaUEN | ||
005 | 20230518205442.0 | ||
008 | 190411s2009 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-74049107863 | |
024 | 7 | |2 cas |a 2 amino 5 phosphonovaleric acid, 76726-92-6; 6 cyano 7 nitro 2,3 quinoxalinedione, 115066-14-3; cesium, 7440-46-2; cocaine, 50-36-2, 53-21-4, 5937-29-1; picrotoxin, 124-87-8; potassium ion, 24203-36-9; tetrodotoxin, 4368-28-9, 4664-41-9; Cocaine, 50-36-2; Receptors, GABA-A | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
030 | |a BIPCB | ||
100 | 1 | |a Urbano, F.J. | |
245 | 1 | 0 | |a Cocaine acute "binge" administration results in altered thalamocortical interactions in mice |
260 | |b Elsevier USA |c 2009 | ||
270 | 1 | 0 | |m Urbano, F. J.; LFBM, IFIBYNE, UBA-CONICET, Intendente Guiraldes 2670, C1428BGA Buenos. Aires, Argentina; email: fjurbano@fbmc.fcen.uba.ar |
506 | |2 openaire |e Política editorial | ||
504 | |a Aharonovich, E., Nunes, E., Hasin, D., Cognitive impairment, retention and abstinence among cocaine abusers in cognitive- behavioral treatment (2003) Drug Alcohol Depend, 71, pp. 207-211 | ||
504 | |a Tomasi, D., Goldstein, R.Z., Telang, F., Maloney, T., Alia-Klein, N., Caparelli, E.C., Volkow, N.D., Thalamo-cortical dysfunction in cocaine abusers: Implications in attention and perception (2007) Psychiatry Res, 155, pp. 189-201 | ||
504 | |a Jones, E.G., Principles of thalamic organization (2007) The Thalamus, pp. 87-165. , Jones EG, editor. 2nd ed. Cambridge: Cambridge University Press | ||
504 | |a Llinás, R.R., Paré, D., Of dreaming and wakefulness (1991) Neuroscience, 44, pp. 521-535 | ||
504 | |a Llinás, R., Ribary, U., Coherent 40-Hz oscillation characterizes dream state in humans (1993) Proc Natl Acad Sci U S A, 90, pp. 2078-2081 | ||
504 | |a Llinás, R., Ribary, U., Contreras, D., Pedroarena, C., The neuronal basis for consciousness (1998) Philos Trans R Soc Lond B Biol Sci, 353, pp. 1841-1849 | ||
504 | |a Steriade, M., Jones, E.G., McCormik, D.A., (1997) The Thalamus, Vol 1. Organization and Function, , Amsterdam: Elsevier | ||
504 | |a Steriade, M., Llinás, R.R., The functional states of the thalamus and the associated neuronal interplay (1988) Physiol Rev, 68, pp. 649-742 | ||
504 | |a Zhu, J.J., Connors, B.W., Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex (1999) J Neurophysiol, 81, pp. 1171-1183 | ||
504 | |a Peden, D.R., Petitjean, C.M., Herd, M.B., Durakoglugil, M.S., Rosahl, T.W., Wafford, K., Developmental maturation of synaptic and extrasynaptic GABAA receptors in mouse thalamic ventrobasal neurons (2008) J Physiol Lond, 586, pp. 965-987 | ||
504 | |a Rutter, J.J., Baumann, M.H., Waterhouse, B.D., Systemically administered cocaine alters stimulus-evoked responses of thalamic somatosensory neurons to perithreshold vibrissae stimulation (1998) Brain Res, 798, pp. 7-17 | ||
504 | |a Rutter, J.J., Devilbiss, D.M., Waterhouse, B.D., Effects of systemically administered cocaine on sensory responses to peri-threshold vibrissae stimulation: Individual cells, ensemble activity, and animal behaviour (2005) Eur J Neurosci, 22, pp. 3205-3216 | ||
504 | |a Jeanmonod, D., Schulman, J., Ramirez, R., Cancro, R., Lanz, M., Morel, A., Neuropsychiatric thalamocortical dysrhythmia: Surgical implications (2003) Neurosurg Clin North Am, 14, pp. 251-265 | ||
504 | |a Llinás, R.R., Ribary, U., Jeanmonod, D., Kronberg, E., Mitra, P.P., Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography (1999) Proc Natl Acad Sci U S A, 96, pp. 15222-15227 | ||
504 | |a Llinás, R., Urbano, F.J., Leznik, E., Ramírez, R.R., Van Marle, H.J., Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect (2005) Trends Neurosci, 28, pp. 325-333 | ||
504 | |a Schramm-Sapyta, N.L., Pratt, A.R., Winder, D.G., Effects of periadolescent versus adult cocaine exposure on cocaine conditioned place preference and motor sensitization in mice (2004) Psychopharmacology, 173, pp. 41-48 | ||
504 | |a Schlussman, S.D., Zhang, Y., Kane, S., Stewart, C.L., Ho, A., Kreek, M.J., Locomotion, stereotypy, and dopamine D1 receptors after chronic "binge" cocaine in C57BL/6J and 129/joules mice (2003) Pharmacol Biochem Behav, 75, pp. 123-131 | ||
504 | |a Riespangler, R., Unterwald, E.M., Kreek, M.J., "Binge" cocaine administration induces a sustained increase of prodynorphin mRNA in rat caudate-putamen (1993) Brain Res Mol Brain Res, 19, pp. 323-327 | ||
504 | |a Zhou, Y., Spangler, R., Yuferov, V.P., Schlussmann, S.D., Ho, A., Kreek, M.J., Effects of selective D1- or D2-like dopamine receptor antagonists with acute "binge" pattern cocaine on corticotrophin-releasing hormone and proopiomelanocortin mRNA levels in the hypothalamus (2004) Mol Brain Res, 130, pp. 61-67 | ||
504 | |a Isoardi, N.A., Bertotto, M.E., Martijena, I.D., Molina, V.A., Carrer, H.F., Lack of feedback inhibition on rat basolateral amygdala following stress or withdrawal from sedative-hypnotic drugs (2007) Eur J Neurosci, 26, pp. 1036-1044 | ||
504 | |a Llinás, R.R., Choi, S., Urbano, F.J., Shin, H.S., Gamma-band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice (2007) Proc Natl Acad Sci U S A, 104, pp. 17819-17824 | ||
504 | |a Alper, K.R., Chabot, R.J., Kim, A.H., Prichep, L.S., John, E.R., Quantitative EEG correlates of crack cocaine dependence (1990) Psychiatry Res Neuroimaging, 35, pp. 95-105 | ||
504 | |a Prichep, L.S., Alper, K.R., Kowalik, S.C., Vaysblat, L.S., Merkin, H.A., Tom, M.L., Prediction of treatment outcome in cocaine dependent males using quantitative EEG (1999) Drug Alcohol Depend, 54, pp. 35-43 | ||
504 | |a Reid, M.S., Flammino, F., Howard, B., Nilsen, D., Prichep, L.S., Cocaine cue versus cocaine dosing in humans: Evidence for distinct neurophysiological response profiles (2008) Pharmacol Biochem Behav, 91, pp. 155-164 | ||
504 | |a Rausell, E., Bickford, L., Manger, P.R., Woods, T.M., Jones, E.G., Extensive divergence and convergence in the thalamocortical projection to monkey somatosensory cortex (1998) J Neurosci, 18, pp. 4216-4232 | ||
504 | |a Pedroarena, C., Llinas, R., Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons (1997) Proc Natl Acad Sci U S A, 94, pp. 724-728 | ||
504 | |a Bauer, L.O., Kranzler, H.R., Electroencephalographic activity and mood in cocaine-dependent outpatients: Effects of cocaine cue exposure (1994) Biol Psychiatry, 36, pp. 189-197 | ||
504 | |a Volkow, N.D., Mullani, N., Gould, K.L., Adler, S., Krajewski, K., Cerebral blood flow in chronic cocaine users: A study with positron emission tomography (1988) Br J Psychiatry, 152, pp. 641-648 | ||
504 | |a Pascual-Leone, A., Dhuna, A., Anderson, D.C., Cerebral atrophy in habitual cocaine abusers: A planimetric CT study (1991) Neurology, 41, pp. 34-38 | ||
504 | |a Liu, X.B., Warren, R.A., Jones, E.G., Synaptic distribution of afferents from the reticular nucleus in ventroposterior nucleus of cat thalamus (1995) J Comp Neurol, 352, pp. 187-202 | ||
504 | |a Wang, S., Bickford, M.E., Van Horn, S.C., Erisir, A., Godwin, D.W., Sherman, S.M., Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat (2001) J Comp Neurol, 440, pp. 321-341 | ||
504 | |a Warren, R.A., Agmon, A., Jones, E.G., Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro (1994) J Neurophysiol, 72, pp. 1993-2003 | ||
504 | |a Jahnsen, H., Llinás, R., Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study (1984) J Physiol Lond, 349, pp. 205-226 | ||
504 | |a Jahnsen, H., Llinas, R., Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro (1984) Journal of Physiology, VOL. 349, pp. 227-247 | ||
504 | |a Coulter, D.A., Huguenard, J.R., Prince, D.A., Calcium currents in rat thalamocortical relay neurones: Kinetic properties of the transient, lowthreshold current (1989) J Physiol Lond, 414, pp. 587-604 | ||
504 | |a Huguenard, J.R., Prince, D.A., A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus (1992) J Neurosci, 12, pp. 3804-3817 | ||
504 | |a Llinás, R., Geijo-Barrientos, E., In vitro studies of mammalian thalamic and reticularis thalami neurons (1988) Cellular Thalamic Mechanisms, pp. 23-33. , Bentivoglio M, Spreafico R, editors. Amsterdam: Elsevier/Holland | ||
504 | |a Benuck, M., Lajtha, A., Reith, M.E., Pharmacokinetics of systemically administered cocaine and locomotor stimulation in mice (1987) J Pharmacol Exp Ther, 243, pp. 144-149 | ||
504 | |a Wilson, M.C., Holbrook, J.M., Actometric effects of intravenous cocaine in rats (1979) Arch Int Pharmacodyn Ther, 238, pp. 244-256 | ||
504 | |a Wise, R.A., Ma, B., A psychomotor stimulant theory of addiction (1987) Psychol Rev, 94, pp. 469-492 | ||
504 | |a Ritz, M.C., Lamb, R.J., Goldberg, S.R., Kuhar, M.J., Cocaine receptors on dopamine transporters are related to self-administration of cocaine (1987) Science, 237, pp. 1219-1223 | ||
504 | |a Howes, S.R., Dalley, J.W., Ch, M., Robbins, T.W., Everitt, B.J., Leftward shift in the acquisition of cocaine self-administration in isolationreared rats: Relationship to extracellular levels of dopamine, serotonin and glutamate in the nucleus accumbens and amygdala-striatal FOS expression (2000) Psychopharmacology (Berl), 151, pp. 55-63 | ||
504 | |a Glowinski, J., Axelrod, J., Effects of drugs on the disposition of H-3-norepinephrine in the rat brain (1966) Pharmacol Rev, 18, pp. 775-785 | ||
504 | |a Ross, S.B., Renyi, A.L., Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue (1969) Eur J Pharmacol, 7, pp. 270-277 | ||
504 | |a McCormick, D.A., Bal, T., Sleep and arousal: Thalamocortical mechanisms (1997) Annu Rev Neurosci, 20, pp. 185-215 | ||
504 | |a McCormick, D.A., Feeser, H.R., Functional implications of burst firing and single spike activity in lateral geniculate relay neurons (1990) Neuroscience, 39, pp. 103-113 | ||
504 | |a Llinás, R.R., Steriade, M., Bursting of thalamic neurons and states of vigilance (2006) J Neurophysiol, 95, pp. 3297-3308 | ||
504 | |a McCormick, D.A., Wang, Z., Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami (1991) J Physiol (Lond), 442, pp. 235-255 | ||
504 | |a Pape, H.C., McCormick, D.A., Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarizationactivated cation current (1989) Nature, 340, pp. 715-718 | ||
504 | |a McCormick, D.A., Pape, H.C., Noradrenergic and serotonergic modulation of a hyperpolarization- activated cation current in thalamic relay neurones (1990) J Physiol (Lond), 431, pp. 319-342 | ||
504 | |a Talley, E.M., Cribbs, L.L., Lee, J.-H., Daud, A., Perez-Reyes, E., Bayliss, D.A., Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels (1999) J Neurosci, 19, pp. 1895-1911 | ||
504 | |a Berger, A.J., Takahashi, T., Serotonin enhances a low-voltage-activated calcium current in rat spinal motoneurons (1990) J Neurosci, 10, pp. 1922-1928 | ||
504 | |a Fraser, D.D., MacVicar, B.A., Low-threshold transient calcium current in rat hippocampal lacunosum-moleculare interneurons: Kinetics and modulation by neurotransmitters (1991) J Neurosci, 11, pp. 2812-2820 | ||
504 | |a Fisher, R., Johnston, D., Differential modulation of single voltage gated calcium channels by cholinergic and adrenergic agonists in adult hippocampal neurons (1990) J Neurophysiol, 64, pp. 1291-1302 | ||
520 | 3 | |a Background: Abnormalities in both thalamic and cortical areas have been reported in human cocaine addicts with noninvasive functional magnetic resonance imaging. Given the substantial involvement of the thalamocortical system in sensory processing and perception, we defined electrophysiology-based protocols to attempt a characterization of cocaine effects on thalamocortical circuits. Methods: Thalamocortical function was studied in vivo and in vitro in mice after cocaine "binge" administration. In vivo awake electroencephalography (EEG) was implemented in mice injected with saline, 1 hour or 24 hours after the last cocaine "binge" injection. In vitro current- and voltage-clamp whole-cell patch-clamp recordings were performed from slices including thalamic relay ventrobasal (VB) neurons. Results: In vivo EEG recordings after cocaine "binge" administration showed a significant increment, compared with saline, in low frequencies while observing no changes in high-frequency γ activity. In vitro patch recordings from VB neurons after cocaine "binge" administration showed low threshold spikes activation at more negative membrane potentials and increments in both lh and low voltage activated T-type calcium currents. Also, a 10-mV negative shift on threshold activation level of T-type current and a remarkable increment in both frequency and amplitudes of γ-aminobutyric acid-A-mediated minis were observed. Conclusions: Our data indicate that thalamocortical dysfunctions observed in cocaine abusers might be due to two distinct but additive events: 1) increased low frequency oscillatory thalamocortical activity, and 2) overinhibition of VB neurons that can abnormally "lock" the whole thalamocortical system at low frequencies. © 2009 Society of Biological Psychiatry. |l eng | |
536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica | ||
536 | |a Detalles de la financiación: Secretaría de Ciencia y Técnica, Universidad de Buenos Aires, 171, X223 | ||
536 | |a Detalles de la financiación: Wellcome Trust, 068941/Z/02/Z | ||
536 | |a Detalles de la financiación: 6220 | ||
536 | |a Detalles de la financiación: Fondo para la Investigación Científica y Tecnológica | ||
536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PICT 2007-01009, BID 1728 OC.AR | ||
536 | |a Detalles de la financiación: Thalamic ventrobasal nucleus (VB) is known to be densely innervated by GABAergic terminals from reticular neurons ( 8,30,31 ) that exert a finely regulated inhibitory control of all relay thalamic neurons through GABA receptors ( 32 ). Both reticular and VB neurons have T-type calcium currents mediated LTS ( 33–36 ). The T-type currents described for VB neurons activate at more hyperpolarized potentials than their reticular neuron counterpart, whereas T channels from the latter have a longer open probability duration generating longer action potential burst ( 36,37 ). It was suggested that such difference in threshold for T-type currents would prevent thalamic nuclei (and therefore the whole thalamocortical system) from being “locked” at GABA-A–driven low-frequency interactions. The increased activation of T-type channels on VB neurons at resting membrane potentials would generate abnormally prominent low-frequency excitatory inputs to the reticular nucleus that in turn would enhance GABAergic feed-back transmission from reticular to VB neurons, as shown in this study. Indeed, bath-applied octanol (50 μmol/L) significantly reduced cocaine “binge”-induced GABAergic minis frequency (data not shown), thus suggesting that the frequency enhancement on VB's GABA-A minis shown here resulted from higher T-currents–mediated LTS bursts at reticular neuron terminals. Although cocaine half-life is relatively short, 30–45 min ( 38 ), cocaine accumulation in plasma/brain is expected after a cocaine “binge” administration (because the three cocaine injections were administered <2 half-lives apart). Cocaine increase would ultimately result in the inhibition of monoamine transporters (dopamine transporter, serotonin transporter, and norepinephrine transporter), elevating synaptic levels of dopamine ( 39–42 ), noradrenaline, and serotonin ( 42–44 ). Indeed, drastic increments in extracellular serotonin and noradrenaline levels on VB nucleus have been reported after cocaine injection ( 11 ). Here we showed persistent changes in GABA-A minis amplitude and frequency values 24 hours after last cocaine “binge” injection, suggesting that cocaine effects on VB/reticular neurons might be related to long-lasting activation of intracellular phosphorylation pathways, triggered by the interaction of monoamines with their pre- and/or postsynaptic receptors. VB neurons are capable of integrating a variety of neuromodulators ( 45 ) that can ultimately affect their glutamatergic and/or GABAergic inputs. The rapid transitions of VB between low ( 33,34,46 ) and high frequency ( 26 ) are modulated by a variety of neurotransmitters ( 8,47 ). Serotonin was reported to have direct excitatory action on GABAergic neurons in the thalamic reticular nucleus ( 48 ) and mediates an enhancement of I h -currents present on thalamic specific neurons ( 49,50 ). Our results suggest that cocaine “binge”-induced effects on VB and reticular neurons might be mediated by serotonin. Accordingly, serotonin could be reducing VB neurons input resistance while incrementing I h -current density and overexciting reticular nucleus to induce the GABA-A–mediated increased inhibition of VB nucleus. Concerning the differential distribution of T-type (Ca v 3) calcium channels among thalamic nuclei, it is widely accepted that Ca V 3.1, nickel-resistant T-channels are present in VB neurons, whereas Ca V 3.2, nickel-sensitive T-channels are all present on reticular neurons ( 51 ). Moreover, serotonin is known to increase Ca V 3.1, nickel-resistant T-channels–mediated currents present in spinal motoneurons (approximately 65%; in slices) ( 52 ) and in hippocampal interneurons (approximately 60%) ( 53 ). Interestingly, in hippocampal interneurons serotonin shifts (approximately 5 mV) the I–V curve of Ca V 3.1 channels toward more hyperpolarizing values ( 53 ). By contrast, adrenergic agonists had no effect on T-channels in CA3 pyramidal neurons from adult guinea pigs ( 54 ). Importantly, CA3 pyramids contain all Ca V 3.1, 3.2, and 3.3 subunits ( 51 ), strongly suggesting that adrenergic receptors do not affect neuronal T channels. Therefore, cocaine “binge”-dependent increments in T-channels currents density as well as I–V shift toward hyperpolarizing values observed in this study agrees with serotonin-mediated enhancement Ca V 3.1, T-channels that might be present on both presynaptic terminals from reticular neurons and postsynaptic VB neurons. If sustained in time, such increment would lead thalamocortical circuitry to a self-destruction due to deleterious effects of the persistent calcium entry. As for the basic mechanisms underneath thalamocortical dysrhythmia syndromes, it has been proposed that increased low-frequency oscillatory activity of reticular GABAergic neurons, enhanced by an excessive hyperpolarization through overactivation of thalamic relay T-type calcium currents, would result in abnormal interactions between low and high frequencies during awake states ( 13–15 ). As far as we know, this is the first study that shows the existence of both thalamic GABAergic overactivation and an increase in T-type calcium currents density, suggesting that acute cocaine administration induces a thalamocortical dysrhythmia-like state. In conclusion, data presented here illustrated two distinct but additive cocaine mediated events: 1) increase in the low-threshold calcium and I h conductance of cortical projecting VB neurons, leading to a direct increase in low-frequency thalamocortical oscillations; and 2) GABAergic-mediated, low-rhythm overinhibition due to the excessive activation of both I h and T-type currents in reticular thalamic neurons. The interaction among both phenomena would “lock” the whole thalamocortical system at low frequencies, ultimately inducing a thalamocortical dysrhythmia-like state. We report no conflict of interest related directly or indirectly to this work. Dr. Bisagno has been authorized to study drug abuse substances in animal models by A.N.M.A.T. (Ministerio de Salud, Argentina). We would like to thank Maria Eugenia Martin for excellent technical assistance. This work was supported by Grants from: FONCYT Agencia Nacional de Promoción Científica y Tecnológica, BID 1728 OC.AR. PICT 2007-01009 (FJU), Wellcome Trust, Grant #068941/Z/02/Z; ANCyT; Grant #6220; UBACYT; Grant #X171, and X223; FONCYT, Agencia Nacional de Promoción Científica y Tecnológica, BID 1728 OC.AR. PICT2005 #32113 and #13367; and BID 1728 OC.AR. PICT 2006 #199 (ODU), National Institutes of Health NS13742 (RRL) and PICT 31,953 (ANPCyT), PIP 5870 (CONICET), and UBACYT M073 (SIW). | ||
593 | |a Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY, United States | ||
593 | |a Laboratorio de Fisiología y Biología Molecular (LFBM), Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, Buenos Aires, Argentina | ||
593 | |a Instituto de Investigaciones Farmacológicas (ININFA-UBACONICET), Buenos Aires, Argentina | ||
690 | 1 | 0 | |a COCAINE |
690 | 1 | 0 | |a GABA-A RECEPTORS |
690 | 1 | 0 | |a MICE |
690 | 1 | 0 | |a T-TYPE CALCIUM CHANNELS |
690 | 1 | 0 | |a THALAMOCORTICAL DYSRHYTHMIA |
690 | 1 | 0 | |a 2 AMINO 5 PHOSPHONOVALERIC ACID |
690 | 1 | 0 | |a 4 AMINOBUTYRIC ACID A RECEPTOR |
690 | 1 | 0 | |a 6 CYANO 7 NITRO 2,3 QUINOXALINEDIONE |
690 | 1 | 0 | |a AMPA RECEPTOR ANTAGONIST |
690 | 1 | 0 | |a CALCIUM CHANNEL T TYPE |
690 | 1 | 0 | |a CESIUM |
690 | 1 | 0 | |a COCAINE |
690 | 1 | 0 | |a KAINIC ACID RECEPTOR ANTAGONIST |
690 | 1 | 0 | |a N METHYL DEXTRO ASPARTIC ACID RECEPTOR BLOCKING AGENT |
690 | 1 | 0 | |a PICROTOXIN |
690 | 1 | 0 | |a POTASSIUM ION |
690 | 1 | 0 | |a TETRODOTOXIN |
690 | 1 | 0 | |a 4 AMINOBUTYRIC ACID A RECEPTOR |
690 | 1 | 0 | |a COCAINE |
690 | 1 | 0 | |a ANIMAL CELL |
690 | 1 | 0 | |a ANIMAL EXPERIMENT |
690 | 1 | 0 | |a ANIMAL MODEL |
690 | 1 | 0 | |a ANIMAL TISSUE |
690 | 1 | 0 | |a ARTICLE |
690 | 1 | 0 | |a BRAIN FUNCTION |
690 | 1 | 0 | |a BRAIN SLICE |
690 | 1 | 0 | |a COCAINE DEPENDENCE |
690 | 1 | 0 | |a DRUG ABUSE |
690 | 1 | 0 | |a ELECTROENCEPHALOGRAPHY |
690 | 1 | 0 | |a IN VITRO STUDY |
690 | 1 | 0 | |a IN VIVO STUDY |
690 | 1 | 0 | |a MOUSE |
690 | 1 | 0 | |a NEUROTRANSMITTER RELEASE |
690 | 1 | 0 | |a NONHUMAN |
690 | 1 | 0 | |a PATCH CLAMP |
690 | 1 | 0 | |a PRIORITY JOURNAL |
690 | 1 | 0 | |a THALAMOCORTICAL TRACT |
690 | 1 | 0 | |a VOLTAGE CLAMP |
690 | 1 | 0 | |a ANIMAL |
690 | 1 | 0 | |a BRAIN CORTEX |
690 | 1 | 0 | |a C57BL MOUSE |
690 | 1 | 0 | |a CELL MEMBRANE POTENTIAL |
690 | 1 | 0 | |a DRUG ANTAGONISM |
690 | 1 | 0 | |a DRUG EFFECT |
690 | 1 | 0 | |a DRUG INTERACTION |
690 | 1 | 0 | |a DRUG POTENTIATION |
690 | 1 | 0 | |a METHODOLOGY |
690 | 1 | 0 | |a NERVE CELL |
690 | 1 | 0 | |a NERVE CELL INHIBITION |
690 | 1 | 0 | |a NERVE TRACT |
690 | 1 | 0 | |a PHYSIOLOGY |
690 | 1 | 0 | |a THALAMUS |
690 | 1 | 0 | |a ANIMALS |
690 | 1 | 0 | |a CEREBRAL CORTEX |
690 | 1 | 0 | |a COCAINE |
690 | 1 | 0 | |a DRUG INTERACTIONS |
690 | 1 | 0 | |a ELECTROENCEPHALOGRAPHY |
690 | 1 | 0 | |a MEMBRANE POTENTIALS |
690 | 1 | 0 | |a MICE |
690 | 1 | 0 | |a MICE, INBRED C57BL |
690 | 1 | 0 | |a NEURAL INHIBITION |
690 | 1 | 0 | |a NEURAL PATHWAYS |
690 | 1 | 0 | |a NEURONS |
690 | 1 | 0 | |a PATCH-CLAMP TECHNIQUES |
690 | 1 | 0 | |a RECEPTORS, GABA-A |
690 | 1 | 0 | |a THALAMUS |
700 | 1 | |a Bisagno, V. | |
700 | 1 | |a Wikinski, S.I. | |
700 | 1 | |a Uchitel, O.D. | |
700 | 1 | |a Llinás, R.R. | |
773 | 0 | |d Elsevier USA, 2009 |g v. 66 |h pp. 769-776 |k n. 8 |p Biol. Psychiatry |x 00063223 |w (AR-BaUEN)CENRE-3966 |t Biological Psychiatry | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-74049107863&doi=10.1016%2fj.biopsych.2009.04.026&partnerID=40&md5=f8b673504c9095df0adda3f56d5abe94 |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1016/j.biopsych.2009.04.026 |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00063223_v66_n8_p769_Urbano |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00063223_v66_n8_p769_Urbano |y Registro en la Biblioteca Digital |
961 | |a paper_00063223_v66_n8_p769_Urbano |b paper |c PE | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
999 | |c 84014 |