Transmission through subwavelength slit structures with a double period: A simple model for the prediction of resonances

Transmission wire gratings comprising several subwavelength slits within each period (compound gratings) have been shown to exhibit abrupt dips in the transmission response. These minima correspond to phase resonances, that are excited in the structure when a particular distribution of the magnetic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Skigin, D.C
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07010caa a22010217a 4500
001 PAPER-23042
003 AR-BaUEN
005 20230518205441.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-70449377246 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JOAOF 
100 1 |a Skigin, D.C. 
245 1 0 |a Transmission through subwavelength slit structures with a double period: A simple model for the prediction of resonances 
260 |c 2009 
270 1 0 |m Skigin, D. C.; Grupo de Electromagnetismo Aplicado, Departamento de Física, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina; email: dcs@df.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Porto, J.A., García-Vidal, F.J., Pendry, J.B., (1999) Phys. Rev. Lett., 83 (14), p. 2845 
504 |a Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., Wolff, P.A., (1998) Nature, 391 (6668), p. 667 
504 |a Astilean, S., Ph, L., Palamaru, M., (2000) Opt. Commun., 175 (4-6), p. 265 
504 |a Takakura, Y., (2001) Phys. Rev. Lett., 86 (24), p. 5601 
504 |a García-Vidal, F.J., Martín-Moreno, L., (2002) Phys. Rev., 66 (15), p. 155412 
504 |a Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Degiron, A., Ebbesen, T.W., (2003) Phys. Rev. Lett., 90 (16), p. 167401 
504 |a Xie, Y., Zakharian, A.R., Moloney, J.V., Mansuripur, M., (2004) Opt. Express, 12 (25), p. 6106 
504 |a Bravo-Abad, J., Martín-Moreno, L., García-Vidal, F.J., (2004) Phys. Rev., 69 (2), p. 026601 
504 |a Benabbas, A., Halté, V., Bigot, J.-Y., (2005) Opt. Express, 13 (22), p. 8730 
504 |a Xie, Y., Zakharian, A.R., Moloney, J.V., Mansuripur, M., (2006) Opt. Express, 14 (14), p. 6400 
504 |a Gordon, R., (2006) Phys. Rev., 73 (15), p. 153405 
504 |a García-Vidal, F.J., Lezec, H.J., Ebbesen, T.W., Martín-Moreno, L., (2003) Phys. Rev. Lett., 90 (21), p. 213901 
504 |a Cao, H., Nahata, A., (2004) Opt. Express, 12 (6), p. 1004 
504 |a Beruete, M., Campillo, I., Dolado, J.S., Rodríguez-Seco, J.E., Perea, E., Sorolla, M., (2004) IEEE Antennas Wirel. Propag. Lett., 3 (16), p. 328 
504 |a Beruete, M., Sorolla, M., Campillo, I., Dolado, J.S., (2005) IEEE Microw. Wirel. Compon. Lett., 15 (4), p. 286 
504 |a Lee, J.W., Seo, M.A., Kim, D.S., Jeoung, S.C., Ch, L., Kang, J.H., Park, Q.-H., (2006) Appl. Phys. Lett., 88 (7), p. 071114 
504 |a Skigin, D.C., Depine, R.A., (2007) Appl. Opt., 46 (9), p. 1385 
504 |a Lester, M., Skigin, D.C., Depine, R.A., (2008) Appl. Opt., 47 (11), p. 1711 
504 |a Lester, M., Skigin, D.C., Depine, R.A., (2009) J. Opt. A: Pure Appl. Opt., 11 (4), p. 045705 
504 |a Skigin, D.C., Depine, R.A., (2005) Phys. Rev. Lett., 95 (21), p. 217402 
504 |a Skigin, D.C., Depine, R.A., (2006) Opt. Commun., 262 (2), p. 270 
504 |a Skigin, D.C., Depine, R.A., (2006) Phys. Rev., 74 (4), p. 046606 
504 |a Skigin, D.C., Loui, H., Popovic, Z., Kuester, E.F., (2007) Phys. Rev., 76 (1), p. 016604 
504 |a Hibbins, A.P., Hooper, I.R., Lockyear, M.J., Sambles, J.R., (2006) Phys. Rev. Lett., 96 (25), p. 257402 
504 |a Ma, Y.G., Rao, X.S., Zhang, G.F., Ong, C.K., (2007) Phys. Rev., 76 (3), p. 031801 
504 |a Navarro-Cía, M., Skigin, D.C., Beruete, M., Sorolla, M., (2009) Appl. Phys. Lett., 94 (9), p. 091107 
504 |a Andrewartha, J.R., Fox, J.R., Wilson, I.J., (1977) Opt. Acta, 26, p. 69 
504 |a Medina, F., Skigin, D.C., Mesa, F., (2008) Proc. 38th European Microwave Conf., 702 
504 |a Medina, F., Mesa, F., Skigin, D.C., (2009) IEEE Trans. Microw. Theory Tech. 
504 |a Gordon, R., (2006) Phys. Rev., 73 (15), p. 153405 
504 |a Quémerais, P., Barbara, A., Le, P.J., López-Ríos, T., (2005) J. Appl. Phys., 97 (5), p. 053507 
504 |a Skigin, D.C., Veremey, V.V., Mittra, R., (1999) IEEE Trans. Antennas Propag., 47 (2), p. 376 
504 |a Fantino, A.N., Grosz, S.I., Skigin, D.C., (2001) Phys. Rev., 64 (1), p. 016605 
504 |a Skigin, D.C., Fantino, A.N., Grosz, S.I., (2003) J. Opt. A: Pure Appl. Opt., 5 (5), p. 129 
520 3 |a Transmission wire gratings comprising several subwavelength slits within each period (compound gratings) have been shown to exhibit abrupt dips in the transmission response. These minima correspond to phase resonances, that are excited in the structure when a particular distribution of the magnetic field phases inside the slits is generated. By using an approximate model based on the modal method, we can easily obtain the resonant frequencies which correspond to transmittance maxima (Fabry-Perot resonances) and minima (phase resonances). This simplified model constitutes a practical tool to accurately predict the relevant characteristics of the transmitted response of compound structures for normal and oblique incidence, without a full solution of the scattering problem. © 2009 IOP Publishing Ltd.  |l eng 
593 |a Grupo de Electromagnetismo Aplicado, Departamento de Física, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av Rivadavia 1917, C1033AAJ Buenos Aires, Argentina 
690 1 0 |a ENHANCED TRANSMISSION 
690 1 0 |a NANOGRATINGS 
690 1 0 |a PHOTONIC CRYSTALS 
690 1 0 |a RESONANCES 
690 1 0 |a APPROXIMATE MODEL 
690 1 0 |a COMPOUND GRATING 
690 1 0 |a COMPOUND STRUCTURES 
690 1 0 |a DOUBLE PERIOD 
690 1 0 |a ENHANCED TRANSMISSION 
690 1 0 |a FABRY-PEROT RESONANCES 
690 1 0 |a MODAL METHOD 
690 1 0 |a NANOGRATINGS 
690 1 0 |a OBLIQUE INCIDENCE 
690 1 0 |a PARTICULAR DISTRIBUTION 
690 1 0 |a PHASE RESONANCES 
690 1 0 |a RESONANT FREQUENCIES 
690 1 0 |a SCATTERING PROBLEMS 
690 1 0 |a SIMPLE MODEL 
690 1 0 |a SIMPLIFIED MODELS 
690 1 0 |a SUBWAVELENGTH SLITS 
690 1 0 |a TRANSMISSION RESPONSE 
690 1 0 |a WIRE GRATING 
690 1 0 |a ELECTROMAGNETIC WAVE TRANSMISSION 
690 1 0 |a MAGNETIC FIELDS 
690 1 0 |a NATURAL FREQUENCIES 
690 1 0 |a PHOTONIC CRYSTALS 
773 0 |d 2009  |g v. 11  |k n. 10  |p J Opt A Pure Appl Opt  |x 14644258  |w (AR-BaUEN)CENRE-5726  |t Journal of Optics A: Pure and Applied Optics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-70449377246&doi=10.1088%2f1464-4258%2f11%2f10%2f105102&partnerID=40&md5=6c0548e2220951f283621dec9cde30da  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/1464-4258/11/10/105102  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14644258_v11_n10_p_Skigin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14644258_v11_n10_p_Skigin  |y Registro en la Biblioteca Digital 
961 |a paper_14644258_v11_n10_p_Skigin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83995