Theory of hyperspherical sturmians for three-body reactions

In this paper we present a theory to describe three-body reactions. Fragmentation processes are studied by means of the Schrödinger equation in hyperspherical coordinates. The three-body wave function is written as a sum of two terms. The first one defines the initial channel of the collision while...

Descripción completa

Detalles Bibliográficos
Autor principal: Gasaneo, G.
Otros Autores: Mitnik, D.M, Frapiccini, A.L, Colavecchia, Flavio Darío, Randazzo, J.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2009
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07574caa a22009857a 4500
001 PAPER-22996
003 AR-BaUEN
005 20241217093201.0
008 190411s2009 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-73949086153 
030 |a JPCAF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gasaneo, G. 
245 1 0 |a Theory of hyperspherical sturmians for three-body reactions 
260 |c 2009 
270 1 0 |m Gasaneo, G.; Departamento de Física, Universidad Nacional Del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Buenos Aires, Argentina; email: ggasaneo@criba.edu.ar 
504 |a Inouye, S., Andrews, M.R., Stenger, K., Miesner, H.J., Stamperkurn, D.M., Ketterle, W., (1998) Nature, 392, p. 151 
504 |a Nielsen, E., Macek, J.H., (1999) Phys. Rev. Lett., 83, p. 1566 
504 |a Rescigno, T.N., Baertschy, M., Isaacs, W.A., McCurdy, C.W., (1999) Science, 286, p. 2474 
504 |a Bray, I., Fursa, D.V., Kheifets, A.S., Stelbovics, A.T., (2002) J. Phys. B, 35, pp. R117 
504 |a Bartschat, K., Hudson, E.T., Scott, M.P., Burke, P.G., Burke, V.M., (1996) J. Phys. B, 29, p. 115 
504 |a Gorczyca, T.W., Badnell, N.R., (1997) J. Phys. B, 30, p. 3897 
504 |a McCurdy, C.W., Baertschy, M., Rescigno, T.N., (2004) J. Phys. B, 37, pp. R137 
504 |a Frapiccini, A.L., Gonzalez, V.Y., Randazzo, J.M., Colavecchia, F.D., Gasaneo, G., (2007) Int. J. Quantum Chem., 107, p. 832 
504 |a Randazzo, J.M., Frapiccini, A.L., Colavecchia, F.D., Gasaneo, G., (2009) Phys. Rev. A, 79, p. 022507 
504 |a Frapiccini, A.L., Randazzo, J.M., Gasaneo, G., Colavecchia, F.D., (2009) Int. J. Quantum Chem., , in press 
504 |a Randazzo, J.M., Frapiccini, A.L., Colavecchia, F.D., Gasaneo, G., (2009) Int. J. Quantum Chem., 109, p. 125 
504 |a Randazzo, J.M., (2009), PhD thesis, Instituto Balseiro, S. C. de Bariloche, Argentina; Seideman, T., Miller, W.H., (1992) J. Chem. Phys., 96, p. 4412 
504 |a Manthe, U., Miller, W.H., (1993) J. Chem. Phys., 99, p. 3411 
504 |a Manthe, U., Seideman, T., Miller, W.H., (1994) J. Chem. Phys., 101, p. 4759 
504 |a Miller, W.H., (1997) J. Chem. Soc., Faraday Trans., 93, p. 685 
504 |a Gasaneo, G., Randazzo, J.M., Frapiccini, A.L., Colavecchia, F.D., Phys. Rev. A, , in preparation 
504 |a Aquilanti, V., Cavalli, S., De Fazio, D., (1998) J. Chem. Phys., 109, p. 3792 
504 |a Aquilanti, V., Cavalli, S., De Fazio, D., Volpi, A., Aguilar, A., Gimenez, X., Lucas, J.M., (1998) J. Chem. Phys., 109, p. 721 
504 |a Aquilanti, V., Cavalli, S., De Fazio, D., Volpi, A., (2001) Int. J. Quantum Chem., 85, p. 368 
504 |a Macek, J.H., Yu, O.S., (1996) Phys. Rev. A, 54, p. 544 
504 |a Abramowitz, M., Stegun, I.A., (1972) Handbook of Mathematical Functions, , Dover: New York 
504 |a Schiff, L.I., (1968) Quantum Mechanics, , McGraw-Hill: New York 
504 |a Karlsson, H.O., (1998) J. Chem. Phys., 108, p. 3849 
504 |a http://www.netlib.org/lapack; Luk, F.T., Qiao, S., (2000) Linear Algebra and its Applications, 316, p. 171 
504 |a Hernández, V., Román, J.E., Tomás, A., Vidal, V., SLEPc Technical Report STR-2, , http://www.grycap.upv.es/slepc/, Available at 
504 |a Nikiforov, A.F., Suslov, S.K., Uvarov, V.B., (1991) Classical Othogonal Polynomials of A Discrete Variable, , Springer-Verlag: Berlin 
504 |a Aquilanti, V., Grossi, G., Lagana, A., (1982) J. Chem. Phys., 76, p. 1587 
504 |a Aquilanti, V., Cavalli, S., De Fazio, D., (1985) J. Phys. Chem., 99, p. 15694 
504 |a Aunola, M., (2003) J. Math. Phys., 44, p. 1913 
504 |a Aunola, M., (2005) J. Phys. A, 38, p. 1279 
504 |a Rudge, M.R.H., Seaton, M.J., (1965) Proc. R. Soc. London, Ser. A, 283, p. 262 
504 |a Gasaneo, G., Macek, J.H., (2002) J. Phys. B, 35, p. 2239 
504 |a Fano, U., (1983) Rep. Prog. Phys., 46, p. 97 
504 |a Lin, C.D., (1995) Phys. Rep., 257, p. 1 
504 |a Pack, R.T., Parker, G.A., (1992) J. Chem. Phys., 98, p. 6883 
506 |2 openaire  |e Política editorial 
520 3 |a In this paper we present a theory to describe three-body reactions. Fragmentation processes are studied by means of the Schrödinger equation in hyperspherical coordinates. The three-body wave function is written as a sum of two terms. The first one defines the initial channel of the collision while the second one describes the scattered wave, which contains all the information about the collision process. The dynamics is ruled by an nonhomogeneous equation with a driven term related to the initial channel and to the three-body interactions. A basis set of functions with outgoing behavior at large values of hyperradius is introduced as products of angular and radial hyperspherical Sturmian functions. The scattered wave is expanded on this basis and the nonhomogeneous equation is transformed into an algebraic problem that can be solved by standard matrix methods. To be able to deal with general systems, discretization schemes are proposed to solve the angular and radial Sturmian equations. This procedure allows these discrete functions to be connected with the hyperquatization algorithm. Finally, the fragmentation transition amplitude is derived from the asymptotic limit of the scattered wave function. © 2009 American Chemical Society.  |l eng 
593 |a Departamento de Física, Universidad Nacional Del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Buenos Aires, Argentina 
593 |a Instituto de Astronomía y Física Del Espacio, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, C. C. 67, Suc. 28, (C1428EGA) Buenos Aires, Argentina 
593 |a División Colisiones Atómicas, Centro Atómico Bariloche, Consejo Nacional de Investigaciones Científicas y Técnicas, 8400 S. C. de Bariloche, Río Negro, Argentina 
690 1 0 |a ASYMPTOTIC LIMITS 
690 1 0 |a BASIS SETS 
690 1 0 |a COLLISION PROCESS 
690 1 0 |a DINGER EQUATION 
690 1 0 |a DISCRETE FUNCTIONS 
690 1 0 |a DISCRETIZATION SCHEME 
690 1 0 |a FRAGMENTATION PROCESS 
690 1 0 |a HYPERSPHERICAL 
690 1 0 |a HYPERSPHERICAL COORDINATES 
690 1 0 |a NONHOMOGENEOUS EQUATIONS 
690 1 0 |a SCATTERED WAVES 
690 1 0 |a STANDARD MATRIX METHOD 
690 1 0 |a STURMIAN 
690 1 0 |a THREE-BODY INTERACTION 
690 1 0 |a THREE-BODY WAVE FUNCTIONS 
690 1 0 |a TRANSITION AMPLITUDES 
690 1 0 |a WAVE FUNCTIONS 
700 1 |a Mitnik, D.M. 
700 1 |a Frapiccini, A.L. 
700 1 |a Colavecchia, Flavio Darío 
700 1 |a Randazzo, J.M. 
773 0 |d 2009  |g v. 113  |h pp. 14573-14582  |k n. 52  |p J Phys Chem A  |x 10895639  |t Journal of Physical Chemistry A 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-73949086153&doi=10.1021%2fjp9040869&partnerID=40&md5=702c65481107d13b404ab8bde2ebb6e4  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp9040869  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_10895639_v113_n52_p14573_Gasaneo  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10895639_v113_n52_p14573_Gasaneo  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_10895639_v113_n52_p14573_Gasaneo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI