Yield estimation and sowing date optimization based on seasonal climate information in the three CLARIS sites

The present article is a contribution to the CLARIS WorkPackage "Climate and Agriculture", and aims at testing whether it is possible to predict yields and optimal sowing dates using seasonal climate information at three sites (Pergamino, Marcos Juarez and Anguil) which are representative...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: d'Orgeval, T.
Otros Autores: Boulanger, J.-P, Capalbo, M.J, Guevara, E., Penalba, O., Meira, S.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Netherlands 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11579caa a22011057a 4500
001 PAPER-22993
003 AR-BaUEN
005 20230518205437.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77149136394 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a CLCHD 
100 1 |a d'Orgeval, T. 
245 1 0 |a Yield estimation and sowing date optimization based on seasonal climate information in the three CLARIS sites 
260 |b Springer Netherlands  |c 2010 
270 1 0 |m Boulanger, J.-P.; Laboratoire d'Océanographie et du Climat, Expérimentation et Analyse Numérique, Paris, France; email: jpb@locean-ipsl.upmc.fr 
506 |2 openaire  |e Política editorial 
504 |a Barnston, A.G., Mason, S., Goddard, L., Dewitt, D., Zebiak, S., Multimodel ensembling in seasonal climate forecasting at IRI (2003) Bull Am Meteorol Soc, 84, pp. 1783-1796 
504 |a Bert, F., Satorre, E., Toranzo, F., Podestá, G., Climatic information and decision-making in maize crop production systems of the Argentinean pampas (2006) Agric Sys, 88, pp. 180-204 
504 |a Boulanger, J., Leloup, J., Penalba, O., Rusticucci, M., Lafon, F., Vargas, W., Observed precipitation in the Paraná-Plata hydrological basin: Long-term trends, extreme conditions and ENSO teleconnections (2005) Clim Dyn, 24, pp. 393-413 
504 |a Breiman, L., Friedman, J., Olshen, R., Stone, C., (1984) Classification and Regression Trees, p. 384. , Boca Raton: Chapman & Hall/CRC 
504 |a Friedman, J.H., Multivariate adaptive regression splines (with discussion) (1991) Ann Stat, 19, p. 1 
504 |a Grimm, A., Barros, V., Doyle, M., Climate variability in Southern South America associated with el Niño and la Niña events (2000) J Climate, 13, pp. 53-58 
504 |a Guevara, E., Meira, S., Using CERES-maize in Argentina (1995) 2nd International Symposium on Systems Approaches for Agricultural Development, IRRI (International Rice Research Institute), , Los Baños, Filipinas, 6-8 December 
504 |a Guevara, E., Meira, S., Calibration and evaluation of CERES-maize model for subtropical environments (1999) The third international symposium on systems approaches for agricultural development (SAAD III), , Lima, Peru, 8-10 November 
504 |a Guevara, E., Meira, S., Peper, A., Hernandorena, C., Yield prediction of five maize hybrids using CERES-maize model in the corn belt of Argentina (1998) 28th Annual Crop Simulation Workshop, , Beltsville, Maryland, USA, 5-8 April 
504 |a Guevara, E., Meira, S., Maturano, M., Coca, M., Maize simulation for different environments of Argentina (1999) International Symposium Modelling Cropping Systems, , Leida, Espaa, 21-23 June 
504 |a Hartmann, H., Pagano, T., Sorooshian, S., Bales, R., Confidence builders. Evaluating seasonal climate forecasts from user perspectives (2002) Bull Am Meteorol Soc, 83, pp. 683-698 
504 |a Jones, J., Hoogenboom, G., Porter, C., Boote, K., Batchelor, W., Hunt, L., Wilkens, P., Ritchie, J., DSSAT cropping system model (2003) EurJ Agron, 18, pp. 235-265 
504 |a Lemos, M., Finan, T., Fox, F., Nelson, D., Tucker, J., The use of seasonal climate forecasting in policy-making: Lessons from Northeast Brazil (2002) Clim Change, 55, pp. 479-507 
504 |a Letson, D., Llovet, I., Podestá, G., Royce, F., Brescia, V., Lema, D., Parallada, G., User's perspectives of climate forecasts: Crop producers in Pergamino, Argentina (2001) Clim Res, 19, pp. 57-67 
504 |a Meira, S., Baigorri, H., Guevara, E., Maturano, M., Calibration of soybean cultivars for the SOYGRO model in two environments of Argentina (1999) IV World Soybean Research Conference, , 4-7 August, Chicago, Illinois, USA 
504 |a Messina, C., Hansen, J., Hall, A., Land allocation conditioned on El Niño Southern Oscillation phases in the pampas of Argentina (1999) Agric Sys, 60, pp. 197-212 
504 |a Penalba, O., Vargas, W., Interdecadal and interannual variations of annual and extreme precipitation over central-northeastern Argentina (2004) Int J Climatol, 24, pp. 1565-1580 
504 |a Podestá, G., Messina, C.D., Grondona, M., Magrin, G., Associations between grain crop yields in central-eastern Argentina and El Niño-Southern Oscillation (1999) J Appl Meteorol, 38, pp. 1488-1498 
504 |a Roncoli, C., Ethnographic and participatory approaches to research on farmers' responses to climate predictions (2006) Clim Res, 33, pp. 81-99 
504 |a Ropelewski, C.F., Halpert, M.S., Quantifying southern oscillation-precipitation relationships (1996) J Climate, 9, pp. 1043-1059 
504 |a Trenberth, K.E., The definition of El Niño (1997) Bull Am Meteorol Soc, 78, pp. 2771-2777 
504 |a Vargas, W., Penalba, O., Minetti, J., Las precipitaciones mensuales and zonas de la Argentina y el ENSO. un enfoque hacia problemas de decisión (1999) Meteorológica, 24, pp. 2-22 
504 |a Vogel, C., O'Brien, K., Who can eat information? Examining the effectiveness of seasonal climate forecasts and regional climate-risk management strategies (2006) Clim Res, 33, pp. 111-122 
520 3 |a The present article is a contribution to the CLARIS WorkPackage "Climate and Agriculture", and aims at testing whether it is possible to predict yields and optimal sowing dates using seasonal climate information at three sites (Pergamino, Marcos Juarez and Anguil) which are representative of different climate and soil conditions in Argentina. Considering that we focus on the use of climate information only, and that official long time yield series are not always reliable and often influenced by both climate and technology changes, we decided to build a dataset with yields simulated by the DSSAT (Decision Support System for Agrotechnology Transfer) crop model, already calibrated in the selected three sites and for the two crops of interest (maize and soybean). We simulated yields for three different sowing dates for each crop in each of the three sites. Also considering that seasonal forecasts have a higher skill when using the 3-month average precipitation and temperature forecasts, and that regional climate change scenarios present less uncertainty at similar temporal scales, we decided to focus our analysis on the use of quarterly precipitation and temperature averages, measured at the three sites during the crop cycle. This type of information is used as input (predictand) for non-linear statistical methods (Multivariate Adaptive Regression Splines, MARS; and classification trees) in order to predict yields and their dependency to the chosen sowing date. MARS models show that the most valuable information to predict yield amplitude is the 3-month average precipitation around flowering. Classification trees are used to estimate whether climate information can be used to infer an optimal sowing date in order to optimize yields. In order to simplify the problem, we set a default sowing date (the most representative for the crop and the site) and compare the yield amplitudes between such a default date and possible alternative dates sometimes used by farmers. Above normal average temperatures at the beginning and the end of the crop cycle lead to respectively later and earlier optimal sowing. Using this classification, yields can be potentially improved by changing sowing date for maize but it is more limited for soybean. More generally, the sites and crops which have more variable yields are also the ones for which the proposed methodology is the most efficient. However, a full evaluation of the accuracy of seasonal forecasts should be the next step before confirming the reliability of this methodology under real conditions. © Springer Science + Business Media B.V. 2009.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: 001454 
536 |a Detalles de la financiación: Centre National de la Recherche Scientifique 
536 |a Detalles de la financiación: Institut de Recherche pour le Développement 
536 |a Detalles de la financiación: T. d’Orgeval · O. Penalba Centro de Investigacion del Mar y la Atmosfera, Buenos Aires, Argentina 
536 |a Detalles de la financiación: Acknowledgements This study was partly founded by Ecole Polytechnique (France) through a Post-doc grant for a collaboration between the Laboratoire de Météorologie Dynamique at Ecole Polytechnique and the Centro de Investigacion del Mar y la Atmosfera at the University of Buenos Aires (Argentina). The authors also wish to thank Martin Fischer for his initial help on MARS models. We wish to thank the European Commission 6th Framework programme for funding the CLARIS Project (Project 001454) during the 3-year duration of the project. Jean-Philippe Boulanger wants to thank the Centre National de la Recherche Scientifique (CNRS) for the administrative coordination of the project, the Institut de Recherche pour le Développement (IRD) for its constant support, and the University of Buenos Aires and its “Department of Atmosphere and Ocean Sciences” for welcoming him during the entire duration of the project. 
593 |a Centro de Investigacion del Mar y la Atmosfera, Buenos Aires, Argentina 
593 |a Laboratoire de Météorologie Dynamique, Paris, France 
593 |a Laboratoire d'Océanographie et du Climat, Expérimentation et Analyse Numérique, Paris, France 
593 |a Instituto Nacional de Tecnología Agropecuaria, Pergamino, Argentina 
690 1 0 |a ARTIFICIAL INTELLIGENCE 
690 1 0 |a CLASSIFICATION (OF INFORMATION) 
690 1 0 |a CLIMATE MODELS 
690 1 0 |a CROPS 
690 1 0 |a DECISION SUPPORT SYSTEMS 
690 1 0 |a FORECASTING 
690 1 0 |a GRAIN (AGRICULTURAL PRODUCT) 
690 1 0 |a INFORMATION USE 
690 1 0 |a SOIL TESTING 
690 1 0 |a UNCERTAINTY ANALYSIS 
690 1 0 |a AGROTECHNOLOGY TRANSFER 
690 1 0 |a CLASSIFICATION TREES 
690 1 0 |a CLIMATE INFORMATION 
690 1 0 |a MULTIVARIATE ADAPTIVE REGRESSION SPLINES 
690 1 0 |a REGIONAL CLIMATE CHANGES 
690 1 0 |a SEASONAL FORECASTS 
690 1 0 |a TECHNOLOGY CHANGE 
690 1 0 |a TEMPERATURE FORECASTS 
690 1 0 |a CLIMATE CHANGE 
690 1 0 |a CLIMATE CHANGE 
690 1 0 |a CROP YIELD 
690 1 0 |a DATA SET 
690 1 0 |a OPTIMIZATION 
690 1 0 |a PRECIPITATION (CLIMATOLOGY) 
690 1 0 |a REGIONAL CLIMATE 
690 1 0 |a SOWING 
690 1 0 |a SOYBEAN 
690 1 0 |a WEATHER FORECASTING 
690 1 0 |a GLYCINE MAX 
690 1 0 |a ZEA MAYS 
651 4 |a ARGENTINA 
700 1 |a Boulanger, J.-P. 
700 1 |a Capalbo, M.J. 
700 1 |a Guevara, E. 
700 1 |a Penalba, O. 
700 1 |a Meira, S. 
773 0 |d Springer Netherlands, 2010  |g v. 98  |h pp. 565-580  |k n. 3  |p Clim. Change  |x 01650009  |w (AR-BaUEN)CENRE-578  |t Climatic Change 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77149136394&doi=10.1007%2fs10584-009-9746-4&partnerID=40&md5=ea4ac19f23f2aaeb3d510a2b65850364  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s10584-009-9746-4  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01650009_v98_n3_p565_dOrgeval  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01650009_v98_n3_p565_dOrgeval  |y Registro en la Biblioteca Digital 
961 |a paper_01650009_v98_n3_p565_dOrgeval  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83946