Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees

Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gotsch, S.G
Otros Autores: Geiger, E.L, Franco, A.C, Goldstein, G., Meinzer, F.C, Hoffmann, W.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Springer Verlag 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 14093caa a22011657a 4500
001 PAPER-22985
003 AR-BaUEN
005 20230518205437.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77952322374 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a OECOB 
100 1 |a Gotsch, S.G. 
245 1 0 |a Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees 
260 |b Springer Verlag  |c 2010 
270 1 0 |m Gotsch, S. G.; Department of Plant Biology, North Carolina State University, Campus Box 7612, Raleigh, NC 27695-7612, United States; email: sybilgotsch@gmail.com 
506 |2 openaire  |e Política editorial 
504 |a Ackerly, D., Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance (2004) Ecol Monogr, 74, pp. 25-44 
504 |a Adejuwon, J.O., Adesina, F.A., The nature and dynamics of the forest-savanna boundary in south-western Nigeria (1992) Nature and Dynamics of the Forest-Savanna Boundaries, pp. 331-352. , P. A. Furley, J. Procter, and J. A. Ratter (Eds.), London: Chapman and Hall 
504 |a Bhaskar, R., Valiente-Banuet, A., Ackerly, D.D., Evolution of hydraulic traits in closely related species pairs from Mediterranean and non-Mediterranean environments of North America (2007) New Phytol, 176, pp. 718-726 
504 |a Bond, W.J., What limits trees in C-4 grasslands and savannas? (2008) Annu Rev Ecol Evol Syst, 39, pp. 641-659 
504 |a Bowman, D.M.J.S., (2000) Australian Rainforests: Islands of Green in a Land of Fire, , Cambridge: Cambridge University Press 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Scholz, F.G., Franco, A.C., Bustamante, M., Functional convergence in hydraulic architecture and water relations of tropical savanna trees: From leaf to whole plant (2004) Tree Physiol, 24, pp. 891-899 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P., Scholz, F.G., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees (2005) Trees Struct Funct, 19, pp. 296-304 
504 |a Castro, E.A., Kauffman, J.B., Ecosystem structure in the Brazilian cerrado: A vegetation gradient of aboveground biomass, root mass and consumption by fire (1998) J Trop Ecol, 14, pp. 263-283 
504 |a Castro-Diez, P., Villar-Salvador, P., Perez-Rontome, C., Maestro-Martinez, M., Montserrat-Marti, G., Leaf morphology, leaf chemical composition and stem xylem characteristics in two Pistacia (Anacardiaceae) species along a climatic gradient (1998) Flora, 193, pp. 195-202 
504 |a da Silva Jr., M.C., Furley, P.A., Ratter, J.A., Variations in tree communities and soils with slope in gallery forest, Federal District, Brazil (1996) Advances in Hillslope Processes, 1, pp. 451-469. , M. G. Anderson and S. M. Brooks (Eds.), Chichester: Wiley 
504 |a Davis, S.D., Ewers, F.W., Sperry, J.S., Portwood, K.A., Crocker, M.C., Adams, G.C., Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: A possible case of hydraulic failure (2002) Am J Bot, 89, pp. 820-828 
504 |a Durigan, G., Ratter, J.A., Successional changes in cerrado and cerrado/forest ecotonal vegetation in western Sao Paulo State, Brazil, 1962-2000 (2006) Edinb J Bot, 63, pp. 119-130 
504 |a Enquist, B.J., West, G.B., Charnov, E.L., Brown, J.H., Allometric scaling of production and life-history variation in vascular plants (1999) Nature, 401, pp. 907-911 
504 |a Felfili, J.M., da silva Jr., M.C., Floristic composition, phytosociology and comparison of cerrado and gallery forests at Fazenda Agua Limpa, Federal District, Brazil (1992) Nature and Dynamics of the Forest-Savanna Boundaries, pp. 393-416. , P. A. Furley, J. Proctor, and J. A. Ratter (Eds.), London: Chapman and Hall 
504 |a Gartner, B.L., Meinzer, F.C., Structure-function relationships in sapwood water transport and storage (2005) Vascular Transport in Plants, pp. 307-331. , M. Zwieniecki and N. M. Holbrook (Eds.), Oxford: Elsevier/Academic Press 
504 |a Granier, A., A new method of sap flow measurement in tree stems (1985) Ann Sci For, 42, pp. 193-200 
504 |a Granier, A., Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements (1987) Tree Physiol, 3, pp. 309-319 
504 |a Hao, G.Y., Hoffmann, W.A., Scholtz, F.G., Bucci, S.J., Meinzer, F.C., Franco, A.C., Cao, K.F., Goldstein, G., Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems (2008) Oecologia, 155, pp. 405-415 
504 |a Hennenberg, K.J., Goetze, D., Kouame, L., Orthmann, B., Porembski, S., Border and ecotone detection by vegetation composition along forest-savanna transects in Ivory Coast (2005) J Veg Sci, 16, pp. 301-310 
504 |a Hoffmann, W.A., Franco, A.C., Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts (2003) J Ecol, 91, pp. 475-484 
504 |a Hoffmann, W.A., Orthen, B., Nascimento, P.K.V., Comparative fire ecology of tropical savanna and forest trees (2003) Funct Ecol, 17, pp. 720-726 
504 |a Hoffmann, W.A., Orthen, B., Franco, A.C., Constraints to seedling success of savanna and forest trees across the savanna-forest boundary (2004) Oecologia, 140, pp. 252-260 
504 |a Hoffmann, W.A., Franco, A.C., Moreira, M.Z., Haridasan, M., Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees (2005) Funct Ecol, 19, pp. 932-940 
504 |a Hoffmann, W.A., Adasme, R., Haridasan, M., Carvalho, M., Geiger, E.L., Pereir, M.A.B., Gotsch, S.G., Franco, A.C., Tree topkill, not mortality, governs the dynamics of alternate stable states at savanna-forest boundaries under frequent fire in central Brazil (2009) Ecology, 90 (5), pp. 1326-1337 
504 |a Kelley, G., O'Grady, A.P., Hutley, L.B., Eamus, D., A comparison of tree water use in two contiguous vegetation communities of the seasonally dry tropics of northern Australia: The importance of site water budget to tree hydraulics (2007) Aust J Bot, 55, pp. 700-708 
504 |a Lundblad, M., Lagergren, F., Lindroth, A., Evaluation of heat balance and heat dissipation methods for sap flow measurements in pine and spruce (2001) Ann For Sci, 58, pp. 625-638 
504 |a Meinzer, F.C., Functional convergence in plant responses to the environment (2003) Oecologia, 134, pp. 1-11 
504 |a Meinzer, F.C., Goldstein, G., Franco, A.C., Bustamante, M., Igler, E., Jackson, P., Caldas, L., Rundel, P.W., Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species (1999) Funct Ecol, 13, pp. 273-282 
504 |a Meinzer, F.C., Johnson, D.M.I., Lachenbruch, B., McCulloh, K.A., Woodruff, D.R., Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance (2009) Funct Ecol, 23, pp. 922-930 
504 |a Myster, R.W., Walker, L.R., Plant successional pathways on Puerto Rican landslides (1997) J Trop Ecol, 13, pp. 165-173 
504 |a Nepstad, D.C., Decarvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Dasilva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature, 372, pp. 666-669 
504 |a O'Grady, A.P., Cook, P.G., Eamus, E.D., Duguid, A., Wischusen, J.D.H., Fass, T., Worldege, D., Convergence of tree water use within an arid-zone woodland (2009) Oecologia, 160, pp. 643-655 
504 |a Oliveira, R.S., Bezerra, L., Davidson, E.A., Pinto, F., Klink, C.A., Nepstad, D.C., Moreira, A., Deep root function in soil water dynamics in cerrado savannas of central Brazil (2005) Funct Ecol, 19, pp. 574-581 
504 |a Oliveira-Filho, A.T., Ratter, J.A., A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns (1995) Edinb J Bot, 52, pp. 141-194 
504 |a Rossatto, D.R., Hoffmann, W.A., Franco, A.C., Differences in growth patterns between co-occurring forest and savanna trees affect the forest-savanna boundary (2009) Funct Ecol, 23, pp. 689-698 
504 |a San José, J.J., Fariñas, M.R., Temporal changes in the structure of a Trachypogon savanna protected for 25 years (1991) Acta Oecol, 12, pp. 237-247 
504 |a Soltis, P., Soltis, D., Edwards, C., (2005) Angiosperms. Flowering Plants, , http://tolweb.org/Angiosperms/20646/2005.06.03, Version 3 June 2005, In: the Tree of Life web project, http://tolweb. org/ 
504 |a Stratton, L., Goldstein, G., Meinzer, F.C., Stem water storage capacity and efficiency of water transport: Their functional significance in a Hawaiian dry forest (2000) Plant Cell Environ, 23, pp. 99-106 
504 |a Tang, G., Bartlein, P., Simulating the climatic effects on vegetation: Approaches, issues and challenges (2008) Prog Phys Geogr, 5, pp. 543-556 
504 |a Tyree, M.T., Snyderman, D.A., Wilmot, T.R., Machado, J.L., Water relations and hydraulic architecture of a tropical tree (Schefflera-Morototoni)-data, models, and a comparison with 2 temperate species (Acer-Saccharum and Thuja-Occidentalis) (1991) Plant Physiol, 96, pp. 1105-1113 
504 |a Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., Plant ecological strategies: Some leading dimensions of variation between species (2002) Annu Rev Ecol Syst, 33, pp. 125-159 
520 3 |a Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Ψ L ), stomatal conductance (g s ), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G t ) was greater for savanna species than forest species. The lower G t of forest trees resulted in significantly lower Ψ L and g s in the late dry season relative to savanna trees. The differences in G t can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Ψ L due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Ψ L were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits. © 2010 Springer-Verlag.  |l eng 
536 |a Detalles de la financiación: National Science Foundation 
536 |a Detalles de la financiación: Acknowledgments We thank IBGE for logistical support; Bruna Diniz, Marina Carvalho, Mirea A. B. Pereira, Inaldo Araujo, Kristen Mckinley and Palmyra Romeo for assistance in the field; and Renee Marchin, On Lee Lau, Alice Wines and Wade Wall and three anonymous reviewers for comments on this manuscript. This material is based on work supported by the National Science Foundation under grant no. DEB-0542912, the A. W. Mellon Foundation, and CNPq, Brazil. 
593 |a Department of Plant Biology, North Carolina State University, Campus Box 7612, Raleigh, NC 27695-7612, United States 
593 |a Departamento de Botânica, Universidade de Brasilia, Caixa Postal 04457, Brasilia, DF 70904970, Brazil 
593 |a Department of Biology, University of Miami, 1301 Memorial Drive, 215, Coral Gables, FL 33124-0421, United States 
593 |a CONICET-Laboratorio de Ecologia Funcional, Departamento de Genetica Ecologia y Evolucion, Ciudad Universitaria, Buenos Aires, Argentina 
593 |a USDA Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, United States 
690 1 0 |a BRAZIL 
690 1 0 |a CERRADO 
690 1 0 |a HUBER VALUE 
690 1 0 |a LEAF AREA INDEX 
690 1 0 |a SAP FLOW 
690 1 0 |a ADAPTATION 
690 1 0 |a BIOMASS ALLOCATION 
690 1 0 |a CERRADO 
690 1 0 |a DROUGHT 
690 1 0 |a DRY SEASON 
690 1 0 |a FOREST CANOPY 
690 1 0 |a HYDRAULIC CONDUCTIVITY 
690 1 0 |a HYPOTHESIS TESTING 
690 1 0 |a LEAF AREA INDEX 
690 1 0 |a SAP FLOW 
690 1 0 |a SAVANNA 
690 1 0 |a STOMATAL CONDUCTANCE 
690 1 0 |a WATER AVAILABILITY 
690 1 0 |a WATER RELATIONS 
690 1 0 |a BRAZIL 
650 1 7 |2 spines  |a HOMEOSTASIS 
700 1 |a Geiger, E.L. 
700 1 |a Franco, A.C. 
700 1 |a Goldstein, G. 
700 1 |a Meinzer, F.C. 
700 1 |a Hoffmann, W.A. 
773 0 |d Springer Verlag, 2010  |g v. 163  |h pp. 291-301  |k n. 2  |p Oecologia  |x 00298549  |w (AR-BaUEN)CENRE-180  |t Oecologia 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952322374&doi=10.1007%2fs00442-009-1543-2&partnerID=40&md5=ffd3195b56bd8aa64b8ce8fb9114e764  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s00442-009-1543-2  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00298549_v163_n2_p291_Gotsch  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00298549_v163_n2_p291_Gotsch  |y Registro en la Biblioteca Digital 
961 |a paper_00298549_v163_n2_p291_Gotsch  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83938