Photosensitized cleavage of plasmidic DNA by norharmane, a naturally occurring β-carboline

UV-A radiation (320-400 nm) induces damages to the DNA molecule and its components through photosensitized reactions. β-Carbolines (βCs), heterocyclic compounds widespread in biological systems, participate in several biological processes and are able to act as photosensitizers. The photosensitizati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Gonzalez, M.M
Otros Autores: Pellon-Maison, M., Ales-Gandolfo, M.A, Gonzalez-Baró, M.R, Erra-Balsells, R., Cabrerizo, F.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
PH
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16229caa a22019697a 4500
001 PAPER-22896
003 AR-BaUEN
005 20230518205431.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77952631234 
024 7 |2 cas  |a DNA, 9007-49-2; beta carboline, 244-63-3; harmine, 343-27-1, 442-51-3; water, 7732-18-5; Carbolines; DNA, 9007-49-2; DNA Adducts; Harmine, 442-51-3; Solutions; Water, 7732-18-5; norharman, 244-63-3 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gonzalez, M.M. 
245 1 0 |a Photosensitized cleavage of plasmidic DNA by norharmane, a naturally occurring β-carboline 
260 |c 2010 
270 1 0 |m Erra-Balsells, R.; CIHIDECAR - CONICET, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, 3p, 1428, Buenos Aires, Argentina 
506 |2 openaire  |e Política editorial 
504 |a Van Der Leun, J.C., De Gruijl, F.R., (2002) Photochem. Photobiol. Sci., 1, pp. 324-326 
504 |a Matsumura, Y., Ananthaswamy, H.N., (2004) Toxicol. Appl. Pharmacol., 195, pp. 298-308 
504 |a Ravanat, J.-L., Douki, T., Cadet, J., (2001) J. Photochem. Photobiol., B, 63, pp. 88-102 
504 |a Cadet, J., Sage, E., Douki, T., (2005) Mutat. Res., Fundam. Mol. Mech. Mutagen., 571, pp. 3-17 
504 |a Delatour, T., Douki, T., D'Ham, C., Cadet, J., (1998) J. Photochem. Photobiol., B, 44, pp. 191-198 
504 |a Wood, P.D., Redmond, R.W., (1996) J. Am. Chem. Soc., 118, pp. 4256-4263 
504 |a Foote, C.S., (1991) Photochem. Photobiol., 54, pp. 659-659 
504 |a Douki, T., Cadet, J., (1999) Int. J. Radiat. Biol., 75, pp. 571-581 
504 |a Cadet, J., Berger, M., Douki, T., Morin, B., Raoul, S., Ravanat, J.-L., Spinelli, S., (1997) Biol. Chem., 378, pp. 1275-1286 
504 |a Ravanat, J.-L., Martinez, R., Medeiros, M.H.G., Di Mascio, P., Cadet, J., (2004) Arch. Biochem. Biophys., 423, pp. 23-30 
504 |a Petroselli, G., Erra-Balsells, R., Cabrerizo, F.M., Lorente, C., Capparelli, A.L., Braun, A.M., Oliveros, E., Thomas, A.H., (2007) Org. Biomol. Chem., 5, pp. 2792-2799 
504 |a Petroselli, G., Dantola, M.L., Cabrerizo, F.M., Capparelli, A.L., Lorente, C., Oliveros, E., Thomas, A.H., (2008) J. Am. Chem. Soc., 130, pp. 3001-3011 
504 |a Hemmateenejad, B., Abbaspour, A., Maghami, H., Miri, R., Panjehshahin, M.R., (2006) Anal. Chim. Acta, 575, pp. 290-299 
504 |a Bais, H.P., Park, S.-W., Stermitz, F.R., Halligan, K.M., Vivanco, J.M., (2002) Phytochemistry, 61, pp. 539-543 
504 |a Kam, T.-S., Sim, K.-M., Koyano, T., Komiyama, K., (1999) Phytochemistry, 50, pp. 75-79 
504 |a Kam, T.-S., Sim, K.-M., (1998) Phytochemistry, 47, pp. 145-147 
504 |a Bourke, C.A., Stevens, G.R., Carrigan, M.J., (1992) Aust. Vet. J., 69, pp. 163-165 
504 |a Abourashed, E.A., Vanderplank, J., Khan, I.A., (2003) Pharm. Biol., 41, pp. 100-106 
504 |a Kearns, P.S., Cou, J.C., Rideout, J.A., (1995) J. Nat. Prod., 58, pp. 1075-1076 
504 |a De Meester, C., (1995) Mutat. Res., Rev.Genet. Toxicol., 339, pp. 139-153 
504 |a Pfau, W., Skog, K., (2004) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci., 802, pp. 115-126 
504 |a Spijkerman, R., Van Den Eijnden, R., Van De Mheen, D., Bongers, I., Fekkes, D., (2002) Eur. Neuropsychopharmacol., 12, pp. 61-71 
504 |a Torreilles, J., Guerin, M., Previero, A., (1985) Biochimie, 67, pp. 929-947 
504 |a Breyer-Pfaff, U., Wiatr, G., Stevens, I., Gaertner, H., Mundle, G., Mann, K., (1996) Life Sci., 58, pp. 1425-1432 
504 |a Pari, K., Sundari, C.S., Chandani, S., Balasubramanian, D., (2000) J. Biol. Chem., 275, pp. 2455-2462 
504 |a Mori, T., Nakagawa, A., Kobayashi, N., Hashimoto, M.W., Wakabayashi, K., Shimoi, K., Kinae, N., (1998) J. Radiat. Res., 39, pp. 21-33 
504 |a Shimoi, K., Kawabata, H., Tomita, I., (1992) Mutat. Res., Fundam. Mol. Mech. Mutagen., 268, pp. 287-295 
504 |a Chang, C., Castellazzi, M., Glover, T., Trosko, J., (1978) Cancer Res., 38, pp. 4527-4533 
504 |a Shimoi, K., Miyamura, R., Mori, T., Todo, T., Ohtsuka, E., Wakabayashi, K., Kinae, N., (1996) Carcinogenesis, 17, pp. 1279-1283 
504 |a Hudson, J.B., Graham, E.A., Towers, G.H.N., (1986) Photochem. Photobiol., 43, pp. 21-26 
504 |a Downum, K.R., (1992) New Phytol., 122, pp. 401-420 
504 |a Varela, A., Burrows, H., Douglas, P., Da Graa, M.J., (2001) J. Photochem. Photobiol., A, 146, pp. 29-36 
504 |a Reyman, D., Pardo, A., Poyato, J.M.L., (1994) J. Phys. Chem., 98, pp. 10408-10411 
504 |a Reyman, D., Pardo, A., Poyato, J.M.L., Rodriguez, J.G., (1996) J. Photochem. Photobiol., A, 98, pp. 39-44 
504 |a Reyman, D., Viñas, M., Poyato, J., Pardo, A., (1997) J. Phys. Chem. A, 101, pp. 768-775 
504 |a Tapia, M., Reyman, D., Vinas, M., Arroyo, A., Poyato, J., (2003) J. Photochem. Photobiol., A, 156, pp. 1-7 
504 |a Becker, R.S., Ferreirar, L.F.V., Elisei, F., MacHado, I., Latterini, L., (2005) Photochem. Photobiol., 81, pp. 1195-1204 
504 |a Biondic, M.C., Erra-Balsells, R., (1992) J. Chem. Soc., Perkin Trans. 2, pp. 1049-1058 
504 |a Biondic, M.C., Erra-Balsells, R., (1994) J. Photochem. Photobiol., A, 77, pp. 149-159 
504 |a Biondic, M.C., Erra-Balsells, R., (1997) J. Chem. Soc., Perkin Trans. 2, pp. 1323-1328 
504 |a Krishnamurthy, M., Kumar, D.S., (1986) J. Chem. Soc., Perkin Trans. 2, pp. 1247-1251 
504 |a Olba Torrent, A., Tomas Vert, F., Zabala Sanchez, I., Medina Casamayor, P., (1987) J. Photochem., 37, pp. 109-116 
504 |a Draxler, S., Lippitsch, M.E., (1993) J. Phys. Chem., 97, pp. 11493-11496 
504 |a Sakurovs, R., Ghiggino, K.P., (1982) J. Photochem., 18, pp. 1-8 
504 |a Ghiggino, K.P., Skilton, P.F., Thistlethwaite, P.J., (1985) J. Photochem., 31, pp. 113-121 
504 |a Carmona, C., Galán, M., Angulo, G., Muñoz, M., Guardado, P., Balón, M., (2000) Phys. Chem. Chem. Phys., 2, pp. 5076-5083 
504 |a Carmona, C., Balón, M., Galán, M., Angulo, G., Guardado, P., Muñoz, M., (2001) J. Phys. Chem. A, 105, pp. 10334-10338 
504 |a Balón, M., Angulo, G., Carmona, C., Muñoz, M., Guardado, P., Galán, M., (2002) Chem. Phys., 276, pp. 155-165 
504 |a Wolfbeis, O.S., Fürlinger, E., (1982) Zeitschrift fur Physikalische Chemie Neue Folge, 129, pp. 171-183 
504 |a Muñoz, M., Balón, M., Hidalgo, J., Carmona, C., Pappalardo, R.R., Sanchez, M.E., (1991) J. Chem. Soc., Perkin Trans. 2, pp. 1729-1734 
504 |a Tomas, V.F., Zabala, S.I., Olba, T.A., (1983) J. Photochem., 23, pp. 355-368 
504 |a Tomas, V.F., Zabala, S.I., Olba, T.A., (1984) J. Photochem., 26, pp. 285-294 
504 |a Tarzi, O.I., Ponce, M.A., Cabrerizo, F.M., Bonesi, S.M., Erra-Balsells, R., (2005) ARKIVOC, 12, pp. 295-310 
504 |a Gonzalez, M.M., Salum, M.L., Gholipour, Y., Cabrerizo, F.M., Erra-Balsells, R., (2009) Photochem. Photobiol. Sci., 8, pp. 1139-1149 
504 |a Gonzalez, M.M., Arnbjerg, J., Denofrio, M.P., Erra-Balsells, R., Ogilby, P.R., Cabrerizo, F.M., (2009) J. Phys. Chem. A, 113, pp. 6648-6656 
504 |a García-Zubiri, I.X., Burrows, H.D., De Melo Seixas, J.S., Pina, J., Monteserín, M., Tapia, M.J., (2007) Photochem. Photobiol., 83, pp. 1455-1464 
504 |a Guan, H., Liu, X., Peng, W., Cao, R., Ma, Y., Chen, H., Xu, A., (2006) Biochem. Biophys. Res. Commun., 342, pp. 894-901 
504 |a Nonami, H., Orcoyen, M., Fukuyama, Y., Biondic, M.C., Erra-Balsells, R., (1998) An. Asoc. Quim., 86, pp. 81-89 
504 |a Colmenarejo, G., Bfircena, M., Gutierrez-Alonso, M.C., Montero, F., Orellana, G., (1995) FEBS Lett., 374, pp. 426-428 
504 |a Bauer, W., Vinograd, J., (1968) J. Mol. Biol., 33, pp. 141-171 
504 |a Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., (1988) J. Phys. Chem. Ref. Data, 17, pp. 513-886 
504 |a Atkinson, R., (1995) Active Oxygen in Chemistry, Vol. 2, , C. S. Foote, J. S. Valentine, A. Greenberg and J. F. Liebman, (ed.), (Chapman & Hall, London, p. 289 
504 |a Lorente, C., Thomas, A.H., Villata, L.S., Hozbor, D., Lagares, A., Capparelli, A.L., (2000) Pteridines, 11, pp. 100-105. , It is easy to note that the accuracy of the d[Sc]/dt value calculated from this experiment is not that good due to the fact that only the first four points of the curve were taken into account to get the slope (i.e., d[Sc]/dt). In order to increase its accuracy, a new set of experiments were performed 
504 |a Kishikawa, H., Jiang, Y.-R., Goodisman, J., Dabrowiak, J.C., (1991) J. Am. Chem. Soc., 113, pp. 5434-5440. , The photophysical properties of N-methyl-norharmane (N-Me-nHo) have been described elsewhere. 54 Briefly, in both acidic and alkaline aqueous solution (i.e., pH = 4.8 and 10.2, respectively) the photophysical process occurs from the same excited state (i.e., the first excited state (S1) of the protonated form of N-Me-nHo). According to the fluorescence quantum yield (ΦF) reported (i.e., ΦF = 0.68 and 0.75 for the neutral and protonated form of N-Me-nHo, respectively), ∼ 90% of the neutral form of N-Me-nHo follows a quick protonation during the lifetime of its singlet excited states 
504 |a Egorov, S.Yu., Babizhayev, M.A., Krasnovsky Jr., A.A., Shvedova, A.A., (1987) Biophysics, 32, pp. 184-186 
504 |a Chae, K.H., Ham, H.S., (1986) Bull Korean Chem. Soc., 7, pp. 478-479 
504 |a Egorov, S.Y., Krasnovsky Jr., A.A., (1990) SPIE Proceedings, 1403, pp. 611-621 
504 |a Briviba, K., Klotz, L.O., Sies, H., (1997) Biol. Chem., 378, pp. 1259-1265 
504 |a Ogilby, P.R., Foote, C.S., (1983) J. Am. Chem. Soc., 105, pp. 3423-3430. , In a very recent study,56 García-Zubiri et al. have proven that, in methanol-water solutions (1% vol/vol), no strand brake damage of DNA was observed in samples irradiated in the presence of β-carboline-3-carboxylic acid N-methylamide (βCMAM). Upon complexation of βCMAM with double-stranded DNA the intersystem crossing process is less efficient in βCMAM, thus decreasing photosensitized 1O2 production. This suggests that the photosensitized damage to cells caused by this β-carboline derivative could involve other routes from the singlet oxygen attack on DNA 
504 |a Taira, Z., Kanzawa, S., Dohara, C., Ishida, S., Matsumoto, M., Sakiya, Y., (1997) Jap. J. Toxicol. Environ. Health, 43, pp. 83-91 
504 |a Balon, M., Munoz, M.A., Carmona, C., Guardado, P., Galan, M., (1999) Biophys. Chem., 80, pp. 41-52 
504 |a García-Zubiri, I.X., Burrows, H.D., De Melo Seixas, J.S., Monteserín, M., Arroyo, A., Tapia, M.J., (2008) J. Fluoresc., 18, pp. 961-972. , Note that the KG value obtained for nHoH+ is higher than that reported for β-carboline-3-carboxylic acid N-methylamide or βCMAM (363 ± 58, 500 ± 90 and 239 ± 43 M-1, at pH 4, 6 and 9, respectively). The pKa value of βCMAM is 3.877. In the pH range 6-9, the neutral form of βCMAM is the predominant specie in the solution. Thus, the absence of the positive charge would decrease the interaction with the DNA molecule. On the other hand, at pH 4 ∼ 50% of each acid-base form of βCMAM are present. Although in the protonated βCMAM form, the norharmane skeleton plane is twisted by 19.58° with respect to the plane carbon 3 substituent,77 the availability of the protonated pyridinic nitrogen is not the same as in the case of norharmane 
504 |a Tapia, M.J., Reyman, D., Viñas, M.H., Arroyo, A., Poyato, J.M.L., (2003) J. Photochem. Photobiol., A, 156, pp. 1-7 
520 3 |a UV-A radiation (320-400 nm) induces damages to the DNA molecule and its components through photosensitized reactions. β-Carbolines (βCs), heterocyclic compounds widespread in biological systems, participate in several biological processes and are able to act as photosensitizers. The photosensitization of plasmidic DNA by norharmane in aqueous solution under UV-A radiation was studied. The effect of pH was evaluated and the participation of reactive oxygen species (ROS), such as hydroxyl radical (HO), superoxide anion (O2 -) and singlet oxygen (1O2) was investigated. A strong dependence of the photosensitized DNA relaxation on the pH was observed. The extent of the reaction was shown to be higher in the experiments performed at pH 4.7 than those performed at pH 10.2. As was expected, an intermediate extent of the reaction was observed at physiological pH (pH 7.4). Kinetic studies using ROS scavengers revealed that the chemical reactions between ROS and DNA are not the main pathways responsible for the damage of DNA. Consequently, the predominant mechanism yielding the DNA strand break takes place most probably via a type I mechanism (electron transfer) from the single excited state (S1) of the protonated form of norharmane (1[nHoH+]*). Additional information about the nature of the norharmane electronic excited states involved in the photocleavage reaction was obtained by using the N-methyl derivative of norharmane (N-methyl-norharmane). © The Royal Society of Chemistry 2010.  |l eng 
593 |a CIHIDECAR - CONICET, Departamento de Química Orgánica, Ciudad Universitaria, Pabellón 2, 3p, 1428, Buenos Aires, Argentina 
593 |a INIBIOLP-CONICET, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina 
690 1 0 |a AQUEOUS SOLUTIONS 
690 1 0 |a BIOLOGICAL PROCESS 
690 1 0 |a CARBOLINES 
690 1 0 |a DNA MOLECULES 
690 1 0 |a DNA STRAND BREAK 
690 1 0 |a EFFECT OF PH 
690 1 0 |a ELECTRON TRANSFER 
690 1 0 |a ELECTRONIC EXCITED STATE 
690 1 0 |a HETEROCYCLIC COMPOUND 
690 1 0 |a HYDROXYL RADICALS 
690 1 0 |a KINETIC STUDY 
690 1 0 |a METHYL DERIVATIVES 
690 1 0 |a NATURALLY OCCURRING 
690 1 0 |a PHOTOCLEAVAGE REACTION 
690 1 0 |a PHYSIOLOGICAL PH 
690 1 0 |a PROTONATED 
690 1 0 |a REACTIVE OXYGEN SPECIES 
690 1 0 |a SINGLET OXYGEN 
690 1 0 |a SUPEROXIDE ANIONS 
690 1 0 |a UVA RADIATION 
690 1 0 |a CESIUM 
690 1 0 |a CESIUM COMPOUNDS 
690 1 0 |a DERIVATIVES 
690 1 0 |a DNA 
690 1 0 |a ELECTRIC EXCITATION 
690 1 0 |a EXCITED STATES 
690 1 0 |a FREE RADICAL REACTIONS 
690 1 0 |a OXYGEN 
690 1 0 |a PHOTOSENSITIZERS 
690 1 0 |a REACTION INTERMEDIATES 
690 1 0 |a PH EFFECTS 
690 1 0 |a BETA CARBOLINE 
690 1 0 |a CARBOLINE DERIVATIVE 
690 1 0 |a DNA 
690 1 0 |a DRUG DERIVATIVE 
690 1 0 |a HARMINE 
690 1 0 |a WATER 
690 1 0 |a ARTICLE 
690 1 0 |a CHEMISTRY 
690 1 0 |a DNA ADDUCT 
690 1 0 |a DNA DAMAGE 
690 1 0 |a DRUG EFFECT 
690 1 0 |a LIGHT 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a PLASMID 
690 1 0 |a SOLUTION AND SOLUBILITY 
690 1 0 |a SPECTROPHOTOMETRY 
690 1 0 |a CARBOLINES 
690 1 0 |a DNA 
690 1 0 |a DNA ADDUCTS 
690 1 0 |a DNA DAMAGE 
690 1 0 |a HARMINE 
690 1 0 |a HYDROGEN-ION CONCENTRATION 
690 1 0 |a LIGHT 
690 1 0 |a PHOTOCHEMISTRY 
690 1 0 |a PLASMIDS 
690 1 0 |a SOLUTIONS 
690 1 0 |a SPECTROPHOTOMETRY 
690 1 0 |a WATER 
650 1 7 |2 spines  |a GENES 
650 1 7 |2 spines  |a PH 
700 1 |a Pellon-Maison, M. 
700 1 |a Ales-Gandolfo, M.A. 
700 1 |a Gonzalez-Baró, M.R. 
700 1 |a Erra-Balsells, R. 
700 1 |a Cabrerizo, F.M. 
773 0 |d 2010  |g v. 8  |h pp. 2543-2552  |k n. 11  |p Org. Biomol. Chem.  |x 14770520  |w (AR-BaUEN)CENRE-2303  |t Organic and Biomolecular Chemistry 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77952631234&doi=10.1039%2fc002235g&partnerID=40&md5=2a666fbfb1407b9b6efa6b0fe76fe3cd  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1039/c002235g  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14770520_v8_n11_p2543_Gonzalez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14770520_v8_n11_p2543_Gonzalez  |y Registro en la Biblioteca Digital 
961 |a paper_14770520_v8_n11_p2543_Gonzalez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83849