Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: A study in mutant mice

The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming α1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming α1G subunit for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Choi, S.
Otros Autores: Yu, E., Kim, D., Urbano, F.J, Makarenko, V., Shin, H., Llinás, R.R
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13798caa a22015617a 4500
001 PAPER-22844
003 AR-BaUEN
005 20230518205427.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77955753406 
024 7 |2 cas  |a Cacna1a protein, mouse; Cacna1g protein, mouse; Calcium Channels, P-Type; Calcium Channels, Q-Type; Calcium Channels, T-Type 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JPHYA 
100 1 |a Choi, S. 
245 1 0 |a Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: A study in mutant mice 
260 |c 2010 
270 1 0 |m Llinás, R.R.; NYU School of Medicine, Physiology and Neuroscience, 550 First Ave, MSB 442, New York, NY 10016, United States; email: llinar01@med.nyu.edu 
506 |2 openaire  |e Política editorial 
504 |a Bal, T., McCormick, D.A., Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current Ih (1997) J Neurophysiol, 77, pp. 3145-3156 
504 |a Bell, C., Kawasaki, T., Relations among climbing fiber responses of nearby Purkinje cells (1972) J Neurophysiol, 35, pp. 155-169 
504 |a Benardo, L., Foster, R., Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates (1986) Brain Res Bull, 17, pp. 773-784 
504 |a Bezrukov, S., Vodyanoy, I., Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels (2000) Self-organized Biological Dynamics and Nonlinear Control, , Walleczek J. ed, Cambridge University Press, Cambridge 
504 |a Bulsara, A., Hanggi, P., Marchesoni, F., Moss, F., Shlesinger, M., Special issue: Stochastic resonance in physics and biology (1993) J Stat Phys, 70, pp. 1-512 
504 |a Crill, W.E., Kennedy, T.T., Inferior olive of the cat: intracellular recording (1967) Science, 157, pp. 716-718 
504 |a De Zeeuw, C., Chorev, E., Devor, A., Manor, Y., Van Der Giessen, R., et al, Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level (2003) J Neurosci, 23, pp. 4900-4911 
504 |a Ertel, E., Campbell, K., Harpold, M., Hofmann, F., Mori, Y., Perez-Reyes, E., Schwartz, A., Birbaumer, L., Nomenclature of voltage-gated calcium channels (2000) Neuron, 25, pp. 533-535 
504 |a Hanggi, P., Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing (2002) Chemphyschem, 3, pp. 285-290 
504 |a Hillman, D., Chen, S., Aung, T.T., Cherksey, B., Sugimori, M., Llinás, R.R., Localization of P-type calcium channels in the central nervous system (1991) Proc Natl Acad Sci U S A, 88, pp. 7076-7080 
504 |a Hutcheon, B., Yarom, Y., Resonance, oscillation and the intrinsic frequency preferences of neurons (2000) Trends Neurosci, 23, pp. 216-222 
504 |a Izhikevich, E.M., Resonate-and-fire neurons (2001) Neural Netw, 14, pp. 883-894 
504 |a Izhikevich, E.M., Desai, N.S., Walcott, E.C., Hoppensteadt, F.C., Bursts as a unit of neural information: selective communication via resonance (2003) Trends Neurosci, 26, pp. 161-167 
504 |a Kennedy, P.R., Ross, H.G., Brooks, V.B., Participation of the principal olivary nucleus in neocerebellar motor control (1982) Exp Brain Res, 47, pp. 95-104 
504 |a Konnerth, A., Obaid, A.L., Salzberg, B.M., Optical recording of electrical activity from parallel fibres and other cell types in skate cerebellar slices in vitro (1987) J Physiol, 393, pp. 681-702 
504 |a Lampl, I., Yarom, Y., Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device (1993) J Neurophysiol, 70, pp. 2181-2186 
504 |a Lampl, I., Yarom, Y., Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism (1997) Neuroscience, 78, pp. 325-341 
504 |a Lev-Ram, V., Grinvald, A., Ca2+- and K+-dependent communication between central nervous system myelinated axons and oligodendrocytes revealed by voltage-sensitive dyes (1986) Proc Natl Acad Sci U S A, 83, pp. 6651-6655 
504 |a Leznik, E., Llinás, R., Role of gap junctions in synchronized neuronal oscillations in the inferior olive (2005) J Neurophysiol, 94, pp. 2447-2456 
504 |a Leznik, E., Makarenko, V., Llinás, R., Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive (2002) J Neurosci, 22, pp. 2804-2815 
504 |a Lindner, B., Longtin, A., Bulsara, A., Analytical expressions for rate CV of a type I neuron driven by Gaussian noise (2003) Neural Comput, 15, pp. 1760-1787 
504 |a Llinás, R., Baker, R., Sotelo, C., Electrotonic coupling between neurons in cat inferior olive (1974) J Neurophysiol, 37, pp. 560-571 
504 |a Llinás, R., Hess, R., Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells (1976) Proc Natl Acad Sci U S A, 73, pp. 2520-2523 
504 |a Llinás, R., Sugimori, M., Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices (1980) J Physiol, 305, pp. 171-195 
504 |a Llinás, R., Volkind, R.A., The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor (1973) Exp Brain Res, 18, pp. 69-87 
504 |a Llinás, R., Walton, K., Hillman, D.E., Sotelo, C., Inferior olive: its role in motor learning (1975) Science, 190, pp. 1230-1231 
504 |a Llinás, R., Yarom, Y., Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances (1981) J Physiol, 315, pp. 549-567 
504 |a Llinás, R., Yarom, Y., Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro (1981) J Physiol, 315, pp. 569-584 
504 |a Llinás, R., Yarom, Y., Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study (1986) J Physiol, 376, pp. 163-182 
504 |a Long, M.A., Deans, M.R., Paul, D.L., Connors, B.W., Rhythmicity without synchrony in the electrically uncoupled inferior olive (2002) J Neurosci, 22, pp. 10898-10905 
504 |a Lowe, L., Voltage-sensitive dyes: measurement of membrane potentials induced by DC and AC electric fields (1992) Bioelectromagnetics, (SUPP 1), pp. 179-189 
504 |a McDonnell, M.D., Abbott, D., What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology (2009) PLoS Comput Biol, 5, pp. e1000348 
504 |a McKay, B.E., McRory, J.E., Molineux, M.L., Hamid, J., Snutch, T.P., Zamponi, G.W., Turner, R.W., CaV3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons (2006) Eur J Neurosci, 24, pp. 2581-2594 
504 |a Makarenko, V., Llinás, R., Experimentally determined chaotic phase synchronization in a neuronal system (1998) Proc Natl Acad Sci U S A, 95, pp. 15747-15752 
504 |a Placantonakis, D.G., Bukovsky, A.A., Aicher, S.A., Kiem, H.P., Welsh, J.P., Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of connexin36 (2006) J Neurosci, 26, pp. 5008-5016 
504 |a Sasaki, K., Bower, J., Llinás, R., Multiple Purkinje cell recording in rodent cerebellar cortex (1989) Eur J Neurosci, 1, pp. 572-586 
504 |a Shaikh, A.G., Miura, K., Optican, L.M., Ramat, S., Leigh, R.J., Zee, D.S., A new familial disease of saccadic oscillations and limb tremor provides clues to mechanisms of common tremor disorders (2007) Brain, 130, pp. 3020-3031 
504 |a Soechting, J.F., Ranish, N.A., Palminteri, R., Terzuolo, C.A., Changes in a motor pattern following cerebellar and olivary lesions in the squirrel monkey (1976) Brain Res, 105, pp. 21-44 
504 |a Sotelo, C., Llinás, R., Baker, R., Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling (1974) J Neurophysiol, 37, pp. 541-559 
504 |a Talley, E.M., Cribbs, L.L., Lee, J.H., Daud, A., Perez-Reyes, E., Bayliss, D.A., Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels (1999) J Neurosci, 19, pp. 1895-1911 
504 |a Van Der Giessen, R.S., Koekkoek, S.K., van Dorp, S., De Gruijl, J.R., Cupido, A., Khosrovani, S., et al, Role of olivary electrical coupling in cerebellar motor learning (2008) Neuron, 58, pp. 599-612 
504 |a Welsh, J.P., Lang, E.J., Suglhara, I., Llinás, R., Dynamic organization of motor control within the olivocerebellar system (1995) Nature, 374, pp. 453-457 
520 3 |a The role of P/Q- and T-type calcium channels in the rhythmic oscillatory behaviour of inferior olive (IO) neurons was investigated in mutant mice. Mice lacking either the CaV2.1 gene of the pore-forming α1A subunit for P/Q-type calcium channel, or the CaV3.1 gene of the pore-forming α1G subunit for T-type calcium channel were used. In vitro intracellular recording from IO neurons reveals that the amplitude and frequency of sinusoidal subthreshold oscillations (SSTOs) were reduced in the CaV2.1-/- mice. In the CaV3.1-/- mice, IO neurons also showed altered patterns of SSTOs and the probability of SSTO generation was significantly lower (15%, 5 of 34 neurons) than that of wild-type (78%, 31 of 40 neurons) or CaV2.1-/- mice (73%, 22 of 30 neurons). In addition, the low-threshold calcium spike and the sustained endogenous oscillation following rebound potentials were absent in IO neurons from CaV3.1-/- mice. Moreover, the phase-reset dynamics of oscillatory properties of single neurons and neuronal clusters in IO were remarkably altered in both CaV2.1-/- and CaV3.1-/- mice. These results suggest that both α1A P/Q- and α1G T-type calcium channels are required for the dynamic control of neuronal oscillations in the IO. These findings were supported by results from a mathematical IO neuronal model that incorporated T and P/Q channel kinetics. © 2010 The Authors. Journal compilation © 2010 The Physiological Society.  |l eng 
593 |a Department of Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States 
593 |a Institute of Physiology, Molecular Biology and Neuroscience (IFIBYNE), National Research Council (CONICET), Buenos Aires, Argentina 
593 |a Department of Neuroscience, University of Science and Technology, Daejon 305-333, South Korea 
593 |a Center for Neural Science, Korea Institute of Science and Technology, Seoul 136-791, South Korea 
593 |a Department of Biological Science, Korea Advanced Institute of Science and Technology, Daejon 305-701, South Korea 
690 1 0 |a CALCIUM CHANNEL 
690 1 0 |a CALCIUM CHANNEL CAV2.1 
690 1 0 |a CALCIUM CHANNEL CAV3.1 
690 1 0 |a CALCIUM CHANNEL P TYPE 
690 1 0 |a CALCIUM CHANNEL Q TYPE 
690 1 0 |a CALCIUM CHANNEL T TYPE 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a CALCIUM CHANNEL P TYPE 
690 1 0 |a CALCIUM CHANNEL Q TYPE 
690 1 0 |a CALCIUM CHANNEL T TYPE 
690 1 0 |a ANIMAL CELL 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a ELECTRIC POTENTIAL 
690 1 0 |a INFERIOR OLIVE 
690 1 0 |a MATHEMATICAL MODEL 
690 1 0 |a MEMBRANE POTENTIAL 
690 1 0 |a MOUSE 
690 1 0 |a NERVE CELL 
690 1 0 |a NONHUMAN 
690 1 0 |a OSCILLATION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a ACTION POTENTIAL AMPLITUDE 
690 1 0 |a ARTICLE 
690 1 0 |a CELL FUNCTION 
690 1 0 |a CELLULAR PARAMETERS 
690 1 0 |a FEMALE 
690 1 0 |a INFERIOR OLIVE 
690 1 0 |a INTRACELLULAR RECORDING 
690 1 0 |a MALE 
690 1 0 |a MEMBRANE STEADY POTENTIAL 
690 1 0 |a MOLECULAR IMAGING 
690 1 0 |a NERVE CELL MEMBRANE POTENTIAL 
690 1 0 |a PROTEIN FUNCTION 
690 1 0 |a PROTEIN TRANSPORT 
690 1 0 |a SIGNAL TRANSDUCTION 
690 1 0 |a SINUSOIDAL SUBTHRESHOLD MEMBRANE POTENTIAL OSCILLATION 
690 1 0 |a SPIKE WAVE 
690 1 0 |a ANIMALS 
690 1 0 |a CALCIUM CHANNELS, P-TYPE 
690 1 0 |a CALCIUM CHANNELS, Q-TYPE 
690 1 0 |a CALCIUM CHANNELS, T-TYPE 
690 1 0 |a CALCIUM SIGNALING 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a KINETICS 
690 1 0 |a MEMBRANE POTENTIALS 
690 1 0 |a MICE 
690 1 0 |a MICE, KNOCKOUT 
690 1 0 |a MODELS, NEUROLOGICAL 
690 1 0 |a NEURONS 
690 1 0 |a OLIVARY NUCLEUS 
700 1 |a Yu, E. 
700 1 |a Kim, D. 
700 1 |a Urbano, F.J. 
700 1 |a Makarenko, V. 
700 1 |a Shin, H. 
700 1 |a Llinás, R.R. 
773 0 |d 2010  |g v. 588  |h pp. 3031-3043  |k n. 16  |p J. Physiol.  |x 00223751  |w (AR-BaUEN)CENRE-7336  |t Journal of Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77955753406&doi=10.1113%2fjphysiol.2009.184705&partnerID=40&md5=0bf78982fb1235477694d4dc6d2c8e3e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1113/jphysiol.2009.184705  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00223751_v588_n16_p3031_Choi  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00223751_v588_n16_p3031_Choi  |y Registro en la Biblioteca Digital 
961 |a paper_00223751_v588_n16_p3031_Choi  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83797