Adenosine drives recycled vesicles to a slow-release pool at the mouse neuromuscular junction

The effects of adenosine on neurotransmission have been widely studied by monitoring transmitter release. However, the effects of adenosine on vesicle recycling are still unknown. We used fluorescence microscopy of FM2-10-labeled synaptic vesicles in combination with intracellular recordings to exam...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Perissinotti, P.P
Otros Autores: Uchitel, O.D
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 16161caa a22014417a 4500
001 PAPER-22830
003 AR-BaUEN
005 20230518205426.0
008 190411s2010 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-77956850016 
024 7 |2 cas  |a 8 cyclopentyl 1,3 dipropylxanthine, 102146-07-6; adenosine, 58-61-7; 1,3-dipropyl-8-cyclopentylxanthine, 102146-07-6; Adenosine, 58-61-7; Receptors, Purinergic P1; Xanthines 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EJONE 
100 1 |a Perissinotti, P.P. 
245 1 0 |a Adenosine drives recycled vesicles to a slow-release pool at the mouse neuromuscular junction 
260 |c 2010 
270 1 0 |m Uchitel, O. D.; Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 2, Buenos Aires 1428, Argentina; email: odu@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Baxter, R.L., Vega-Riveroll, L.J., Deuchars, J., Parson, S.H., A2A adenosine receptors are located on presynaptic motor nerve terminals in the mouse (2005) Synapse, 57, pp. 229-234 
504 |a Bennett, M.R., Karunanithi, S., Lavidis, N.A., Probabilistic secretion of quanta from nerve terminals in toad (Bufo marinus) muscle modulated by adenosine (1991) J. Physiol., 433, pp. 421-434 
504 |a Betz, W.J., Depression of transmitter release at the neuromuscular junction of the frog (1970) J. Physiol., 206, pp. 629-644 
504 |a Catterall, W.A., Structure and regulation of voltage-gated Ca2+ channels (2000) Annu. Rev. Cell Dev. Biol., 16, pp. 521-555 
504 |a Ceccarelli, B., Hurlbut, W.P., Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction (1980) J. Cell Biol., 87, pp. 297-303 
504 |a Ceccarelli, B., Hurlbut, W.P., Mauro, A., Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction (1973) J. Cell Biol., 57, pp. 499-524 
504 |a Chen, Y., Deng, L., Maeno-Hikichi, Y., Lai, M., Chang, S., Chen, G., Zhang, J.F., Formation of an endophilin-Ca2+ channel complex is critical for clathrin-mediated synaptic vesicle endocytosis (2003) Cell, 115, pp. 37-48 
504 |a Christensen, B.N., Martin, A.R., Estimates of probability of transmitter release at the mammalian neuromuscular junction (1970) J. Physiol., 210, pp. 933-945 
504 |a Chung, C., Barylko, B., Leitz, J., Liu, X., Kavalali, E.T., Acute dynamin inhibition dissects synaptic vesicle recycling pathways that drive spontaneous and evoked neurotransmission (2010) J. Neurosci., 30, pp. 1363-1376 
504 |a De Lorenzo, S., Veggetti, M., Muchnik, S., Losavio, A., Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction (2004) Br. J. Pharmacol., 142, pp. 113-124 
504 |a Deák, F., Schoch, S., Liu, X., Südhof, T.C., Kavalali, E.T., Synaptobrevin is essential for fast synaptic-vesicle endocytosis (2004) Nat. Cell Biol., 6, pp. 1102-1108 
504 |a Dowdall, M.J., Boyne, A.F., Whittaker, V.P., Adenosine triphosphate. A constituent of cholinergic synaptic vesicles (1974) Biochem. J., 140, pp. 1-12 
504 |a Flink, M.T., Atchison, W.D., Ca2+ channels as targets of neurological disease: Lambert-Eaton syndrome and other Ca2+ channelopathies (2003) J. Bioenerg. Biomembr., 35, pp. 697-718 
504 |a Galli, T., Haucke, V., (2004) Cycling of Synaptic Vesicles: How Far? How Fast!, , Science's STKE [electronic resource]: signal transduction knowledge environment 
504 |a Von Gersdorff, H., Matthews, G., Inhibition of endocytosis by elevated internal calcium in a synaptic terminal (1994) Nature, 370, pp. 652-655 
504 |a Hamilton, B.R., Smith, D.O., Autoreceptor-mediated purinergic and cholinergic inhibition of motor nerve terminal calcium currents in the rat (1991) J. Physiol., 432, pp. 327-341 
504 |a Heuser, J.E., Reese, T.S., Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction (1973) J. Cell Biol., 57, pp. 315-344 
504 |a Hirsh, J.K., Silinsky, E.M., Inhibition of spontaneous acetylcholine secretion by 2-chloroadenosine as revealed by a protein kinase inhibitor at the mouse neuromuscular junction (2002) Br. J. Pharmacol., 135, pp. 1897-1902 
504 |a Hirsh, J.K., Searl, T.J., Silinsky, E.M., Regulation of Rab3A of an endogeneous modulator of neurotransmitter release at mouse motor nerve endings (2002) J. Physiol., 545, pp. 337-343 
504 |a Kalandakanond, S., Coffield, J.A., Cleavage of SNAP-25 by botulinum toxin type A requires receptor-mediated endocytosis, pH-dependent translocation, and zinc (2001) J. Pharmacol. Exp. Ther., 296, pp. 980-986 
504 |a Kuromi, H., Kidokoro, Y., Selective replenishment of two vesicle pools depends on the source of Ca2+ at the Drosophila synapse (2002) Neuron, 35, pp. 333-343 
504 |a Liu, G.J., Werry, E.L., Bennett, M.R., Secretion of ATP from Schwann cells in response to uridine triphosphate (2005) Eur. J. Neurosci., 21, pp. 151-160 
504 |a McLachlan, E.M., Martin, A.R., Non-linear summation of end-plate potentials in the frog and mouse (1981) J. Physiol., 311, pp. 307-324 
504 |a Meriney, S.D., Grinnell, A.D., Endogenous adenosine modulates stimulation-induced depression at the frog neuromuscular junction (1991) J. Physiol., 443, pp. 441-455 
504 |a Morgan, J.R., Augustine, G.J., Lafer, E.M., Synaptic vesicle endocytosis: The races, places, and molecular faces (2002) Neuromolecular Med., 2, pp. 101-114 
504 |a Moulder, K.L., Mennerick, S., Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons (2005) J. Neurosci., 25, pp. 3842-3850 
504 |a Nagano, O., Foldes, F.F., Nakatsuka, H., Reich, D., Ohta, Y., Sperlagh, B., Vizi, E.S., Presynaptic A1-purinoceptor-mediated inhibitory effects of adenosine and its stable analogues on the mouse hemidiaphragm preparation (1992) Naunyn Schmiedebergs Arch. Pharmacol., 346, pp. 197-202 
504 |a Nagy, A., Baker, R.R., Morris, S.J., Whittaker, V.P., The preparation and characterization of synaptic vesicles of high purity (1976) Brain Res., 109, pp. 285-309 
504 |a Neher, E., Zucker, R.S., Multiple calcium-dependent processes related to secretion in bovine chromaffin cells (1993) Neuron, 10, pp. 21-30 
504 |a Nicholson-Tomishima, K., Ryan, T.A., Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin i (2004) Proc. Natl Acad. Sci. USA, 101, pp. 16648-16652 
504 |a Novick, P., Brennwald, P., Friends and family: The role of the Rab GTPases in vesicular traffic (1993) Cell, 75, pp. 597-601 
504 |a Perissinotti, P.P., Tropper, B.G., Uchitel, O.D., L-type calcium channels are involved in fast endocytosis at the mouse neuromuscular junction (2008) Eur. J. Neurosci., 27, pp. 1333-1344 
504 |a Pfeffer, S.R., Rab GTPases: Master regulators of membrane trafficking (1994) Curr. Opin. Cell Biol., 6, pp. 522-526 
504 |a Polo-Parada, L., Bose, C.M., Landmesser, L.T., Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions (2001) Neuron, 32, pp. 815-828 
504 |a Poskanzer, K.E., Marek, K.W., Sweeney, S.T., Davis, G.W., Synaptotagmin i is necessary for compensatory synaptic vesicle endocytosis in vivo (2003) Nature, 426, pp. 559-563 
504 |a Protti, D.A., Uchitel, O.D., Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin ω-Aga-IVA (1993) Neuroreport, 5, pp. 333-336 
504 |a Pyle, J.L., Kavalali, E.T., Piedras-Rentería, E.S., Tsien, R.W., Rapid reuse of readily releasable pool vesicles at hippocampal synapses (2000) Neuron, 28, pp. 221-231 
504 |a Redman, R.S., Silinsky, E.M., ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings (1994) J. Physiol., 477, pp. 117-127 
504 |a Ribeiro, J.A., Sebastiao, A.M., On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction (1987) J. Physiol., 384, pp. 571-585 
504 |a Ribeiro, J.A., Walker, J., The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions (1975) Br. J. Pharmacol., 54, pp. 213-218 
504 |a Richards, D.A., Guatimosim, C., Betz, W.J., Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals (2000) Neuron, 27, pp. 551-559 
504 |a Richards, D.A., Guatimosim, C., Rizzoli, S.O., Betz, W.J., Synaptic vesicle pools at the frog neuromuscular junction (2003) Neuron, 39, pp. 529-541 
504 |a Rizzoli, S.O., Betz, W.J., Synaptic vesicle pools (2005) Nat. Rev. Neurosci., 6, pp. 57-69 
504 |a Rosenmund, C., Stevens, C.F., Definition of the readily releasable pool of vesicles at hippocampal synapses (1996) Neuron, 16, pp. 1197-1207 
504 |a Schikorski, T., Stevens, C.F., Morphological correlates of functionally defined synaptic vesicle populations (2001) Nat. Neurosci., 4, pp. 391-395 
504 |a Sheng, Z.H., Rettig, J., Cook, T., Catterall, W.A., Calcium-dependent interaction of N-type calcium channels with the synaptic core complex (1996) Nature, 379, pp. 451-454 
504 |a Silinsky, E.M., On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings (1984) J. Physiol., 346, pp. 243-256 
504 |a Silinsky, E.M., Adenosine decreases both presynaptic calcium currents and neurotransmitter release at the mouse neuromuscular junction (2004) J. Physiol., 558, pp. 389-401 
504 |a Silinsky, E.M., Modulation of calcium currents is eliminated after cleavage of a strategic component of the mammalian secretory apparatus (2005) J. Physiol., 566, pp. 681-688 
504 |a Silinsky, E.M., Selective disruption of the mammalian secretory apparatus enhances or eliminates calcium current modulation in nerve endings (2008) Proc. Natl Acad. Sci. USA, 105, pp. 6427-6432 
504 |a Simons, K., Zerial, M., Rab proteins and the road maps for intracellular transport (1993) Neuron, 11, pp. 789-799 
504 |a Smith, D.O., Sources of adenosine released during neuromuscular transmission in the rat (1991) J. Physiol., 432, pp. 343-354 
504 |a Stevens, C.F., Tsujimoto, T., Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool (1995) Proc. Natl Acad. Sci. USA, 92, pp. 846-849 
504 |a Südhof, T.C., The synaptic vesicle cycle revisited (2000) Neuron, 28, pp. 317-320 
504 |a Takahashi, T., Momiyama, A., Different types of calcium channels mediate central synaptic transmission (1993) Nature, 366, pp. 156-158 
504 |a Uchitel, O.D., Protti, D.A., Sanchez, V., Cherksey, B.D., Sugimori, M., Llinas, R., P-type voltage-dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses (1992) Proc. Natl Acad. Sci. USA, 89, pp. 3330-3333 
504 |a Urbano, F.J., Depetris, R.S., Uchitel, O.D., Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals (2001) Pflugers Arch., 441, pp. 824-831 
504 |a Veggetti, M., Muchnik, S., Losavio, A., Effect of purines on calcium-independent acetylcholine release at the mouse neuromuscular junction (2008) Neuroscience, 154, pp. 1324-1336 
504 |a Voglmaier, S.M., Kam, K., Yang, H., Fortin, D.L., Hua, Z., Nicoll, R.A., Edwards, R.H., Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling (2006) Neuron, 51, pp. 71-84 
504 |a Wang, C., Zucker, R.S., Regulation of synaptic vesicle recycling by calcium and serotonin (1998) Neuron, 21, pp. 155-167 
504 |a Watanabe, H., Yamashita, T., Saitoh, N., Kiyonaka, S., Iwamatsu, A., Campbell, K.P., Mori, Y., Takahashi, T., Involvement of Ca2+ channel synprint site in synaptic vesicle endocytosis (2010) J. Neurosci., 30, pp. 655-660 
520 3 |a The effects of adenosine on neurotransmission have been widely studied by monitoring transmitter release. However, the effects of adenosine on vesicle recycling are still unknown. We used fluorescence microscopy of FM2-10-labeled synaptic vesicles in combination with intracellular recordings to examine whether adenosine regulates vesicle recycling during high-frequency stimulation at mouse neuromuscular junctions. The A1 adenosine receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine) increased the quantal content released during the first endplate potential, suggesting that vesicle exocytosis can be restricted by endogenous adenosine, which accordingly decreases the size of the recycling vesicle pool. Staining protocols designed to label specific vesicle pools that differ in their kinetics of release showed that all vesicles retrieved in the presence of 8-cyclopentyl-1,3-dipropylxanthine were recycled towards the fast-release pool, favoring its loading with FM2-10 and suggesting that endogenous adenosine promotes vesicle recycling towards the slow-release pool. In accordance with this effect, exogenous applied adenosine prevented the replenishment of the fast-release vesicle pool and, thus, hindered its loading with the dye. We had found that, during high-frequency stimulation, Ca 2+ influx through L-type channels directs newly formed vesicles to a fast-release pool (Perissinotti et al., 2008). We demonstrated that adenosine did not prevent the effect of the L-type blocker on transmitter release. Therefore, activation of the A1 receptor promotes vesicle recycling towards the slow-release pool without a direct effect on the L-type channel. Further studies are necessary to elucidate the molecular mechanisms involved in the regulation of vesicle recycling by adenosine. © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.  |l eng 
593 |a Departamento de Fisiología Biología Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, piso 2, Buenos Aires 1428, Argentina 
690 1 0 |a FM2-10 
690 1 0 |a LEVATOR AURIS LONGUS 
690 1 0 |a NEUROMODULATOR 
690 1 0 |a VESICLE POOLS 
690 1 0 |a VESICLE RECYCLING 
690 1 0 |a 8 CYCLOPENTYL 1,3 DIPROPYLXANTHINE 
690 1 0 |a ADENOSINE 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CALCIUM TRANSPORT 
690 1 0 |a CELL VACUOLE 
690 1 0 |a EXOCYTOSIS 
690 1 0 |a FLUORESCENCE MICROSCOPY 
690 1 0 |a MALE 
690 1 0 |a MOUSE 
690 1 0 |a NEUROMUSCULAR SYNAPSE 
690 1 0 |a NEUROTRANSMITTER RELEASE 
690 1 0 |a NONHUMAN 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a STAINING 
690 1 0 |a SYNAPSE VESICLE 
690 1 0 |a ADENOSINE 
690 1 0 |a ANIMALS 
690 1 0 |a MALE 
690 1 0 |a MICE 
690 1 0 |a MOTOR ENDPLATE 
690 1 0 |a NEUROMUSCULAR JUNCTION 
690 1 0 |a PRESYNAPTIC TERMINALS 
690 1 0 |a RECEPTORS, PURINERGIC P1 
690 1 0 |a SYNAPTIC VESICLES 
690 1 0 |a TIME FACTORS 
690 1 0 |a XANTHINES 
700 1 |a Uchitel, O.D. 
773 0 |d 2010  |g v. 32  |h pp. 985-996  |k n. 6  |p Eur. J. Neurosci.  |x 0953816X  |w (AR-BaUEN)CENRE-4671  |t European Journal of Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-77956850016&doi=10.1111%2fj.1460-9568.2010.07332.x&partnerID=40&md5=0b1a7d60bfd1c2cdba699eced7591e52  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1460-9568.2010.07332.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0953816X_v32_n6_p985_Perissinotti  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0953816X_v32_n6_p985_Perissinotti  |y Registro en la Biblioteca Digital 
961 |a paper_0953816X_v32_n6_p985_Perissinotti  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83783