Structural color in beetles of South America

Photonic microstructures in nature, specifically in endemic species of Coleoptera from Argentina and the south of Chile have been identified, analyzed and modeled. These natural systems produce partial photonic bandgaps (PBGs) as a result of the high periodicity of the microstructures found in some...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Luna, Ana Eugenia
Otros Autores: Skigin, D.C, Inchaussandague, M.E, Alsina, A.R
Formato: Acta de conferencia Capítulo de libro
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 07292caa a22009377a 4500
001 PAPER-22767
003 AR-BaUEN
005 20250613092953.0
008 190411s2010 xx ||||fo|||| 10| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-78649977577 
030 |a PSISD 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Luna, Ana Eugenia 
245 1 0 |a Structural color in beetles of South America 
260 |c 2010 
270 1 0 |m Luna, A. E.; Departamento de Física, Grupo de Electromagnetismo Aplicado, IFIBA (CONICET), Pabellón I, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina; email: aluna@df.uba.ar 
504 |a Berthier, S., (2007) Iridescences, the Physical Colours of Insects, , Springer Science+Business Media, LLC, France 
504 |a Kinoshita, S., (2008) Structural Colors in the Realm of Nature, , World Scientific Publishing Co., Singapore 
504 |a Parker, A., 515 million years of structural colour (2000) J. Opt. A, Pure Appl. Opt., 2, pp. R15R28 
504 |a Srinivasarao, M., Nano-optics in the biological world: Beetles, butterflies, birds, and moths (1999) Chem. Rev., 99, p. 19351961 
504 |a Vukusic, P., Sambles, J.R., Photonic structures in biology (2003) Nature, 424, p. 852855 
504 |a Vukusic, P., Stavenga, D.G., Physical methods for investigating structural colours in biological systems (2009) J. R. Soc. Interface, 6, pp. S133-S148 
504 |a Doucet, S.M., Meadows, M.G., Iridescence: A functional perspective (2009) J. R. Soc. Interface, 6, pp. S115S132 
504 |a Yoshioka, S., Kinoshita, S., Single-scale spectroscopy of structurally colored butterflies: Measurements of quantified reflectance and transmittance (2006) J. Opt. Soc. Am. A, 23, pp. 134-141 
504 |a Zhang, W., Zhang, D., Fan, T., Ding, J., Gu, J., Guo, Q., Ogawa, H., Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates (2006) Bioinsp. Biomim., 1, p. 8995 
504 |a Martín-Palma, R.J., Pantano, C.G., Lakhtakia, A., Biomimetization of butterfly wings by the conformalevaporated-film- byrotation technique for photonics (2008) Appl. Phys. Lett., 93, p. 083901 
504 |a Biomimetics and bioinspiration (2009) Proceedings of SPIE-The International Society for Optical Engineering, 7401, p. 183 
504 |a Schultz, T.D., Rankin, M.A., The ultrastructure of the epicuticular interference reflectors of tiger beetles (Cicindela) (1985) J. Exp. Biol, 117, pp. 87-110 
504 |a Liu, F., Dong, B.Q., Liu, X.H., Zheng, Y.M., Zi, J., Structural color change in longhorn beetles Tmesisternus isabellae (2009) Opt. Express, 17, pp. 16183-16191 
504 |a Java-based Image Processing Program, , http://rsbweb.nih.gov/ij/, ImageJ is a public domain 
504 |a Yeh, P., Yariv, A., (1984) Optical Waves in Crystals, , Wiley, New York 
504 |a Lozano, R., (1978) El Color y Su Medición, , Americalee Ed., Argentina 
504 |a Gralak, B., Tayeb, G., Enoch, S., Morpho butterflies wings color modeled with lamellar grating theory (2001) Opt. Express, 9, p. 567 
504 |a http://www.easyrgb.com; Hariyama, T., Hironaka, M., Horiguchi, H., Stavenga, D.G., The leaf beetle, the jewel beetle, and the damselfly; Insects with a multilayered show case (2005) Structural Colors in Biological Systems-Principles and Applications, pp. 153-176. , S. Kinoshita and S. Yoshioka (eds.), Osaka University Press, OsakaA4 - The Society of Photo-Optical Instrumentation Engineers (SPIE) 
506 |2 openaire  |e Política editorial 
520 3 |a Photonic microstructures in nature, specifically in endemic species of Coleoptera from Argentina and the south of Chile have been identified, analyzed and modeled. These natural systems produce partial photonic bandgaps (PBGs) as a result of the high periodicity of the microstructures found in some parts of their bodies. With the aid of scanning (SEM) and transmission (TEM) electron microscopy we have identified that the elytron (modified forewing of a beetle that encases the thin hind wings used in flight) of these insects shows a periodic structure which originates diffractive phenomena resulting in extraordinary physical effects such as iridescent or metallic colors. We measured the reflectance spectrum and obtained the chromaticity diagrams of the samples with an Ocean Optics 4000 spectrophotometer. The geometrical parameters of the structure were obtained by processing the SEM images with the ImageJ software, to introduce them in our electromagnetic model. In all cases, a satisfactory agreement between the measurements and the numerical results was obtained. This permits us to explain the mechanism of color production in those specimens. The study of structural colors in the natural world can inspire the development of artificial devices with particular applications in technology, such as intelligent sensors and new kinds of filters. © 2010 SPIE.  |l eng 
593 |a Departamento de Física, Grupo de Electromagnetismo Aplicado, IFIBA (CONICET), Pabellón I, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina 
593 |a Dep. de Entomología, Museo Argentino de Ciencias Naturales, Av. Angel Gallardo 470, C1405DJR Ciudad Autónoma de Buenos Aires, Argentina 
650 1 7 |2 spines  |a COLOR 
651 4 |a ARGENTINA 
651 4 |a SOUTH AMERICA 
690 1 0 |a IRIDESCENCE 
690 1 0 |a NATURAL PHOTONIC CRYSTALS 
690 1 0 |a STRUCTURAL COLOR 
690 1 0 |a ARTIFICIAL DEVICES 
690 1 0 |a CHROMATICITY DIAGRAM 
690 1 0 |a COLEOPTERA 
690 1 0 |a COLOR PRODUCTION 
690 1 0 |a ELECTROMAGNETIC MODELS 
690 1 0 |a ENDEMIC SPECIES 
690 1 0 |a GEOMETRICAL PARAMETERS 
690 1 0 |a INTELLIGENT SENSORS 
690 1 0 |a IRIDESCENCE 
690 1 0 |a METALLIC COLOR 
690 1 0 |a NATURAL PHOTONIC CRYSTALS 
690 1 0 |a NATURAL SYSTEMS 
690 1 0 |a NATURAL WORLD 
690 1 0 |a NUMERICAL RESULTS 
690 1 0 |a OCEAN OPTICS 
690 1 0 |a PHYSICAL EFFECTS 
690 1 0 |a REFLECTANCE SPECTRUM 
690 1 0 |a SEM 
690 1 0 |a SEM IMAGE 
690 1 0 |a STRUCTURAL COLOR 
690 1 0 |a TEM 
690 1 0 |a LIGHT 
690 1 0 |a MICROSTRUCTURE 
690 1 0 |a PHOTONIC CRYSTALS 
700 1 |a Skigin, D.C. 
700 1 |a Inchaussandague, M.E. 
700 1 |a Alsina, A.R. 
711 2 |c San Diego, CA  |d 2 August 2010 through 2 August 2010  |g Código de la conferencia: 82637 
773 0 |d 2010  |g v. 7782  |p Proc SPIE Int Soc Opt Eng  |n Proceedings of SPIE - The International Society for Optical Engineering  |x 0277786X  |z 9780819482785  |t The Nature of Light: Light in Nature III 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-78649977577&doi=10.1117%2f12.858695&partnerID=40&md5=ba108f01af3f31c29b6a735c816d5871  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1117/12.858695  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0277786X_v7782_n_p_Luna  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0277786X_v7782_n_p_Luna  |y Registro en la Biblioteca Digital 
961 |a paper_0277786X_v7782_n_p_Luna  |b paper  |c NP 
962 |a info:eu-repo/semantics/conferenceObject  |a info:ar-repo/semantics/documento de conferencia  |b info:eu-repo/semantics/publishedVersion 
963 |a NORI 
999 |c 83720