Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees

Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. The rate of decline in tissue water potential with r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Scholz, F.G
Otros Autores: Bucci, S.J, Goldstein, G., Meinzer, F.C, Franco, A.C, Miralles-Wilhelm, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: Blackwell Publishing Ltd 2007
Materias:
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 15692caa a22012377a 4500
001 PAPER-22748
003 AR-BaUEN
005 20230518205420.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33846067568 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a PLCED 
100 1 |a Scholz, F.G. 
245 1 0 |a Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees 
260 |b Blackwell Publishing Ltd  |c 2007 
270 1 0 |m Goldstein, G.; Laboratorio de Ecología Funcional, Departamento de Ecología, Genética Y Evolución, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina; email: goldstein@bio.miami.edu 
506 |2 openaire  |e Política editorial 
504 |a Benyon, R.G., Nighttime water use in an irrigated eucalyptus grandis plantation (1999) Tree Physiology, 19, pp. 853-859 
504 |a Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Hinojosa, J.A., Hoffmann, W.A., Franco, A.C., Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species (2004) Tree Physiology, 24, pp. 1119-1127 
504 |a Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Campanello, P., Scholz, F.G., Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees (2005) Trees, 19, pp. 296-304 
504 |a Castro, L.H.R., Kauffman, J.B., Ecosystem structure in the Brazilian Cerrado: A vegetation gradient of aboveground biomass, root mass and consumption by fire (1998) Journal of Tropical Ecology, 14, pp. 263-283 
504 |a Clearwater, M.J., Meinzer, F.C., andrade, J.L., Goldstein, G., Holbrook, N.M., Potential errors in measurement of no uniform sap flow using heat dissipation probes (1999) Tree Physiology, 19, pp. 681-687 
504 |a Coradin, V.T., (2000) Formacao de aneis de crecimiento e sazonalidade da atividade cambial de dez especies lenhosas de Cerrado, , PhD thesis, University of Brasilia, Brasil 
504 |a Do, F., Rocheteau, A., Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes.1. Field observations and possible remedies (2002) Tree Physiology, 22, pp. 641-648 
504 |a Donovan, L.A., Grisé, D.J., West, J.B., Papport, R.A., Alder, N.N., Richards, J.H., Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs (1999) Oecologia, 120, pp. 209-217 
504 |a Edwards, W.R.N., Jarvis, P.J., Landsberg, J.J., Talbor, H., A dynamics model for studying flow of water in single tree (1986) Tree Physiology, 1, pp. 309-324 
504 |a Ferri M. (1944) Transpiraçao de plantas permanentes dos cerrados. Boletins da Facultade de Filosofia, Ciencas e Letras, Universidade de Sao Paulo 41, Botãnica 4, 159-224; Franco-Viscaino, E., Goldstein, G., Ting, J.P., Comparative gas exchange of leaves and bark in three stem succulents of Baja California (1990) American Journal of Botany, 77, pp. 1272-1278 
504 |a Goldstein, G., Meinzer, F.C., Monasterio, M., The role of capacitance in the water balance of Andean giant rosette species (1984) Plant, Cell & Environment, 21, pp. 397-406 
504 |a Goldstein, G., Sarmiento, G., Meinzer, F.C., Patrones diarios y estacionales en las relaciones hídricas de árboles de la sabana tropical (1986) Acta Oecologica, 7, pp. 107-119 
504 |a Goldstein, G., Andrade, J.L., Meinzer, F.C., Holbrook, N.M., Cavelier, J., Jackson, P., Celis, A., Stem water storage and diurnal patterns of water use in tropical forest canopy trees (1998) Plant, Cell& Environment, 21, pp. 397-406 
504 |a Goodland, R., Ferri, M.G., (1979) Ecologia do Cerrado, p. 193. , Editora da Universidade de São Paulo, São Paulo, Brazil 
504 |a Granier, A., Une nouvelle méthode pour la mesure du flux de séve brute dans le tronc des arbres (1985) Annales des Sciences Forestieres, 42, pp. 193-200 
504 |a Granier, A., Evaluation of transpiration in a Douglas fir stand by mean of sap flow measurement (1987) Tree Physiology, 3, pp. 309-320 
504 |a Hoffmann, W.A., Orthen, B., Nascimiento, P.K.W., Comparative fire ecology of tropical savanna and forest trees (2003) Functional Ecology, 17, pp. 720-726 
504 |a Hoffmann, W.A., Orthen, B., Franco, A.C., Constraints to seedling success of savanna and forest trees across the savanna-forest boundary (2004) Oecologia, 140, pp. 252-260 
504 |a Holbrook, N.M., Stem water storage (1995) Plant Stems: Physiology and Functional Morphology, pp. 151-174. , ed. B.L. Gartner, pp, Academic Press, San Diego, CA, USA 
504 |a Holbrook, N.M., Sinclair, T.R., Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage (1992) Plant, Cell & Environment, 15, pp. 401-409 
504 |a Jackson, P.C., Meinzer, F.C., Bustamante, M., Goldstein, G., Franco, A., Rundel, P.W., Caldas, L., Causin, F., Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem (1999) Tree Physiology, 19, pp. 717-724 
504 |a Jarvis, P.G., Water transfer in plants (1975) Heat and Mass Transfer in the Plant Environment, pp. 369-394. , eds D.A. de Vries & N.G. Afgan, pp, Scripta, Washington DC 
504 |a Kobayashi, Y., Tanaka, T., Water flow and hydraulic characteristics of Japanese red pine and oak trees (2001) Hydrological Processes, 15, pp. 1731-1750 
504 |a Medina, E., Nutrient requirements conservation and cycles of nutrients in the herbaceous layer (1987) Determinants of Savannas, pp. 39-65. , ed. B.J. Walker, pp, IRL Press, Oxford, UK 
504 |a Meinzer, F.C., Goldstein, G., Adaptations for water and thermal balance in andean giant rosette plants (1986) On the Economy of Plant Form and Function, pp. 391-411. , ed. T.M. Givnish, pp, Cambridge University Press, Cambridge, UK 
504 |a Meinzer, F.C., Goldstein, G., Franco, A.C., Bustamante, M., Igler, E., Jackson, P., Caldas, L., Rundel, P.W., Atmospheric and hydraulic limitations on transpiration in Brazilian Cerrado woody species (1999) Functional Ecology, 13, pp. 273-282 
504 |a Meinzer, F.C., Clearwater, M.J., Goldstein, G., Water transport in trees: Current perspectives, new insights and some controversies (2001) Environmental and Experimental Botany, 45, pp. 239-262 
504 |a Meinzer, F.C., James, S.A., Goldstein, G., Woodruff, D., Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees (2003) Plant, Cell & Environment, 26, pp. 1147-1155 
504 |a Meinzer, F.C., Brooks, J.R., Domec, J.C., Gartner, B.L., Warren, J.L., Woodruff, D., Bible, K., Shaw, D.C., Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques (2006) Plant, Cell & Environment, 29, pp. 105-114 
504 |a Nielsen, E.T., Sharifi, M.R., Rundel, P.W., Forseth, I.N., Ehleringer, J.R., Water relations of stem succulents trees in north central Baja California (1990) Oecologia, 82, pp. 299-303 
504 |a Nobel, P.S., (1991) Physicochemical and Environmental Plant Physiology, p. 635. , Academic Press, San Diego, CA, USA 
504 |a Oren, R., Phillips, N., Ewers, B.E., Pataki, D.E., Megonigal, J.P., Sap-flux scaled transpiration responses to light, air saturation deficit, and leaf area allocation in a flooded Taxodium distichum forest (1999) Tree Physiology, 19, pp. 337-347 
504 |a Perämäki, M., Nikinmaa, E., Sevanto, S., Ilvesniemi, H., Silvola, E., Hari, P., Vesala, T., Tree stem diameter variations and transpiration in Scots pine: An analysis using a dynamics sap flow model (2001) Tree Physiology, 21, pp. 889-897 
504 |a Phillips, N., Nagchaudhuri, A., Oren, R., Katul, G.G., Time constant for water uptake in loblolly pine trees estimated from time series of stem sap flow and evaporative demand (1997) Trees, 11, pp. 412-419 
504 |a Phillips, N., Ryan, M.G., Bond, B.J., McDowell, N.G., Hinckley, T.M., Cermak, J., Reliance on stored water increases with tree size in three species in the Pacific Northwest (2003) Tree Physiology, 23, pp. 237-245 
504 |a Sarmiento, G., The savannas of tropical America (1983) Ecosystem of the World/Tropical Savannas, pp. 245-288. , ed. F. Bouliere, pp, Elsevier, Amsterdam 
504 |a Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Hydraulic redistribution of soil water by Neotropical savanna trees (2002) Tree Physiology, 22, pp. 603-612 
504 |a Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Removal of nutrient limitation by long term fertilization decreases nocturnal water loss in savanna trees (2006) Tree Physiology, , in press 
504 |a Sellin, A., Does pre-dawn water potential reflect conditions of equilibrium in plant and soil water status? (1999) Acta Oecologica, 20, pp. 51-69 
504 |a Simpson, W.T., Specific gravity, density, and moisture content relationship for wood. USDA Forest Service, Forest Products Laboratory (1993) General Technical Report, 76, p. 13 
504 |a Sperry, J.S., Hacke, U.G., Oren, R., Comstock, J.P., Water deficit and hydraulic limits to leaf water supply (2002) Plant, Cell & Environment, 25, pp. 251-263 
504 |a Tyree, M.T., A dynamic model for water flow in a single tree: Evidence that models must account for hydraulic architecture (1988) Tree Physiology, 4, pp. 195-217 
504 |a Tyree, M.T., Hammel, H.T., The measurement of the turgor pressure and water relations of plants by the pressure bomb technique (1972) Journal of Experimental Botany, 23, pp. 267-282 
504 |a Tyree, M.T., Yang, S., Water storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms: The contribution of capillary water and cavitation (1990) Planta, 182, pp. 420-426 
504 |a Valio, I.F.M., Moraes, V., Marques, M., Cavalcante, P., Sobre o balanco de agua de Terminalia argentea Mart. Et Zuc, nas condicaoes dos Cerrado na estacao seca (1966) Anais da Academia Brasilera das Ciencias (suplemento), 38, p. 259. , 243 
504 |a Waring, R.H., Whitehead, D., Jarvis, P.J., Sapwood water storage: Its contribution to transpiration and effects upon the water conductance through the stems of old-growth Douglas fir (1978) Plant, Cell & Environment, 1, pp. 131-140 
504 |a Waring, R.H., Brown, J.H., Enquist, B.J., The contribution of stored water to transpiration in Scots pine (1979) Plant, Cell & Environment, 2, pp. 309-317 
504 |a Williams, M., Rastetter, E.B., Fernandes, D.N., Goulden, M.L., Wofsy, S.C., Shaver, G.R., Melillo, J.M., Nadelhoffer, K.J., Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties (1996) Plant, Cell & Environment, 19, pp. 911-927 
504 |a Wronski, E.B., Holmes, J.W., Turner, N.C., Phase and amplitude relations between transpiration, water potential and stem shrinkage (1985) Plant, Cell & Environment, 8, pp. 613-622 
504 |a Zimmermann, M.H., (1983) Xylem Structure and the Ascent Of Sap, , Springer-Verlag, Berlin, Germany 
504 |a Zweifel, R., Hasler, R., Dynamics of water storage in mature subalpine Picea abies: Temporal and spatial patterns of change in stem radius (2001) Tree Physiology, 21, pp. 561-569 
520 3 |a Biophysical characteristics of sapwood and outer parenchyma water storage compartments were studied in stems of eight dominant Brazilian Cerrado tree species to assess the impact of differences in tissue capacitance on whole-plant water relations. The rate of decline in tissue water potential with relative water content (RWC) was greater in the outer parenchyma than in the sapwood for most of the species, resulting in tissue-and species-specific differences in capacitance. Sapwood capacitance on a tissue volume basis ranged from 40 to 160 kg m-3 MPa-1, whereas outer parenchyma capacitance ranged from 25 to only 60 kg m-3 MPa-1. In addition, osmotic potentials at full turgor and at the turgor loss point were more negative for the outer parenchyma compared with the sapwood, and the maximum bulk elastic modulus was higher for the outer parenchyma than for the sapwood. Sapwood capacitance decreased linearly with increasing sapwood density across species, but there was no significant correlation between outer parenchyma capacitance and tissue density. Midday leaf water potential, the total hydraulic conductance of the soil/leaf pathway and stomatal conductance to water vapour (g s) all increased with stem volumetric capacitance, or with the relative contribution of stored water to total daily transpiration. However, the difference between the pre-dawn water potential of non-transpiring leaves and the weighted average soil water potential, a measure of the water potential disequilibrium between the plant and soil, increased asymptotically with total stem capacitance across species, implying that overnight recharge of water storage compartments was incomplete in species with greater capacitance. Overall, stem capacitance contributes to homeostasis in the diurnal and seasonal water balance of Cerrado trees. © 2007 The Authors.  |l eng 
593 |a Laboratorio de Ecología Funcional, Departamento de Ecología, Genética Y Evolución, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina 
593 |a Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL 33124, United States 
593 |a US Department of Agriculture Forest Service, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, United States 
593 |a Departamento de Botanica, Universidade de Brasília, Caixa Postal 04457, Brasília, DF 70904-970, Brazil 
593 |a Department of Civil and Environmental Engineering, Florida International University, EC 3680, 10555 W. Flagler Street, Miami, FL 33174, United States 
690 1 0 |a CAPACITANCE 
690 1 0 |a CERRADO 
690 1 0 |a HYDRAULIC ARCHITECTURE 
690 1 0 |a STOMATAL CONDUCTANCE 
690 1 0 |a WATER POTENTIAL 
690 1 0 |a BIOPHYSICS 
690 1 0 |a BULK MODULUS 
690 1 0 |a CERRADO 
690 1 0 |a FUNCTIONAL MORPHOLOGY 
690 1 0 |a HYDRAULIC CONDUCTIVITY 
690 1 0 |a NEOTROPICAL REGION 
690 1 0 |a SAVANNA 
690 1 0 |a SOIL WATER POTENTIAL 
690 1 0 |a STOMATAL CONDUCTANCE 
690 1 0 |a WATER UPTAKE 
690 1 0 |a BRAZIL 
650 1 7 |2 spines  |a HOMEOSTASIS 
650 1 7 |2 spines  |a OSMOSIS 
651 4 |a SOUTH AMERICA 
700 1 |a Bucci, S.J. 
700 1 |a Goldstein, G. 
700 1 |a Meinzer, F.C. 
700 1 |a Franco, A.C. 
700 1 |a Miralles-Wilhelm, F. 
773 0 |d Blackwell Publishing Ltd, 2007  |g v. 30  |h pp. 236-248  |k n. 2  |p Plant Cell Environ.  |x 01407791  |w (AR-BaUEN)CENRE-6496  |t Plant, Cell and Environment 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846067568&doi=10.1111%2fj.1365-3040.2006.01623.x&partnerID=40&md5=8f9ede8e42fda4b0172fbfd0b357559e  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1365-3040.2006.01623.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_01407791_v30_n2_p236_Scholz  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01407791_v30_n2_p236_Scholz  |y Registro en la Biblioteca Digital 
961 |a paper_01407791_v30_n2_p236_Scholz  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83701