Applying dimensional analysis to wave dispersion
We show that dimensional analysis supplemented by physical insight determines if a wave has dispersion, without recourse to sophisticated mathematical tools. © 2007 American Association of Physics Teachers.
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | Capítulo de libro |
Lenguaje: | Inglés |
Publicado: |
2007
|
Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
Aporte de: | Registro referencial: Solicitar el recurso aquí |
LEADER | 03312caa a22003737a 4500 | ||
---|---|---|---|
001 | PAPER-22714 | ||
003 | AR-BaUEN | ||
005 | 20241015103255.0 | ||
008 | 190411s2007 xx ||||fo|||| 00| 0 eng|d | ||
024 | 7 | |2 scopus |a 2-s2.0-33847066650 | |
040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
100 | 1 | |a Gratton, J. | |
245 | 1 | 0 | |a Applying dimensional analysis to wave dispersion |
260 | |c 2007 | ||
270 | 1 | 0 | |m Gratton, J.; INFIP CONICET, Dpto. de Física, Ciudad Universitaria, Pab. I, 428 Buenos Aires, Argentina; email: jgratton@tinfip.lfp.uba.ar |
504 | |a Bohren, C.F., Dimensional analysis, falling bodies, and the fine art of not solving differential equations (2004) Am. J. Phys, 72, pp. 534-537 | ||
504 | |a Pelesko, J.A., Cesky, M., Huertas, S., Lenz's law and dimensional analysis (2005) Am. J. Phys, 73, pp. 37-39 | ||
504 | |a The Pi theorem states that if p is the number of characteristic parameters (constant or variable) of the problem, and among them there are q that have independent dimensions, the number of dimensionless independent combinations that can be formed among them is equal to p-q. The original presentation of this theorem is due to E. Buckingham, On physically similar systems; Illustrations of the use of dimensional equations, Phys. Rev. 4, 345-376 (1914). It is also discussed in many books; see, for example, L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1959); To be more precise, there can be a characteristic length as long as it does not play a role in the propagation of the waves, because in this case this length does not appear in the invariants ∏1, ∏n-2; Hall, H.E., (1974) Solid State Physics, , Wiley, New York | ||
504 | |a Klemens, P.G., Dispersion relation for waves on liquid surfaces (1984) Am. J. Phys, 52, pp. 451-452 | ||
504 | |a Lighthill, J., (1978) Waves in Fluids, , Cambridge U. P, Cambridge | ||
506 | |2 openaire |e Política editorial | ||
520 | 3 | |a We show that dimensional analysis supplemented by physical insight determines if a wave has dispersion, without recourse to sophisticated mathematical tools. © 2007 American Association of Physics Teachers. |l eng | |
593 | |a INFIP CONICET, Dpto. de Física, Ciudad Universitaria, Pab. I, 428 Buenos Aires, Argentina | ||
593 | |a Universidad Favaloro, Solís 453, 1078 Buenos Aires, Argentina | ||
593 | |a Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina | ||
700 | 1 | |a Perazzo, Carlos Alberto | |
773 | 0 | |d 2007 |g v. 75 |h pp. 158-160 |k n. 2 |p Am. J. Phys. |x 00029505 |w (AR-BaUEN)CENRE-366 |t American Journal of Physics | |
856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847066650&doi=10.1119%2f1.2372471&partnerID=40&md5=d0a27c60c3711eb4bdb6c9fa66f6024e |x registro |y Registro en Scopus |
856 | 4 | 0 | |u https://doi.org/10.1119/1.2372471 |x doi |y DOI |
856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00029505_v75_n2_p158_Gratton |x handle |y Handle |
856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029505_v75_n2_p158_Gratton |x registro |y Registro en la Biblioteca Digital |
961 | |a paper_00029505_v75_n2_p158_Gratton |b paper |c NP | ||
962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
963 | |a NORI |