Applying dimensional analysis to wave dispersion

We show that dimensional analysis supplemented by physical insight determines if a wave has dispersion, without recourse to sophisticated mathematical tools. © 2007 American Association of Physics Teachers.

Detalles Bibliográficos
Autor principal: Gratton, J.
Otros Autores: Perazzo, Carlos Alberto
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03312caa a22003737a 4500
001 PAPER-22714
003 AR-BaUEN
005 20241015103255.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33847066650 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Gratton, J. 
245 1 0 |a Applying dimensional analysis to wave dispersion 
260 |c 2007 
270 1 0 |m Gratton, J.; INFIP CONICET, Dpto. de Física, Ciudad Universitaria, Pab. I, 428 Buenos Aires, Argentina; email: jgratton@tinfip.lfp.uba.ar 
504 |a Bohren, C.F., Dimensional analysis, falling bodies, and the fine art of not solving differential equations (2004) Am. J. Phys, 72, pp. 534-537 
504 |a Pelesko, J.A., Cesky, M., Huertas, S., Lenz's law and dimensional analysis (2005) Am. J. Phys, 73, pp. 37-39 
504 |a The Pi theorem states that if p is the number of characteristic parameters (constant or variable) of the problem, and among them there are q that have independent dimensions, the number of dimensionless independent combinations that can be formed among them is equal to p-q. The original presentation of this theorem is due to E. Buckingham, On physically similar systems; Illustrations of the use of dimensional equations, Phys. Rev. 4, 345-376 (1914). It is also discussed in many books; see, for example, L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic, New York, 1959); To be more precise, there can be a characteristic length as long as it does not play a role in the propagation of the waves, because in this case this length does not appear in the invariants ∏1, ∏n-2; Hall, H.E., (1974) Solid State Physics, , Wiley, New York 
504 |a Klemens, P.G., Dispersion relation for waves on liquid surfaces (1984) Am. J. Phys, 52, pp. 451-452 
504 |a Lighthill, J., (1978) Waves in Fluids, , Cambridge U. P, Cambridge 
506 |2 openaire  |e Política editorial 
520 3 |a We show that dimensional analysis supplemented by physical insight determines if a wave has dispersion, without recourse to sophisticated mathematical tools. © 2007 American Association of Physics Teachers.  |l eng 
593 |a INFIP CONICET, Dpto. de Física, Ciudad Universitaria, Pab. I, 428 Buenos Aires, Argentina 
593 |a Universidad Favaloro, Solís 453, 1078 Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina 
700 1 |a Perazzo, Carlos Alberto 
773 0 |d 2007  |g v. 75  |h pp. 158-160  |k n. 2  |p Am. J. Phys.  |x 00029505  |w (AR-BaUEN)CENRE-366  |t American Journal of Physics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847066650&doi=10.1119%2f1.2372471&partnerID=40&md5=d0a27c60c3711eb4bdb6c9fa66f6024e  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1119/1.2372471  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00029505_v75_n2_p158_Gratton  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00029505_v75_n2_p158_Gratton  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00029505_v75_n2_p158_Gratton  |b paper  |c NP 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a NORI