The weak normalization of the simply typed λse-calculus

In this paper, we show the weak normalization (WN) of the simply-typed λse-calculus with open terms where abstractions are decorated with types, and metavariables, de Bruijn indices and updating operators are decorated with environments. We show a proof of WN using the λωe-calculus, a calculus isomo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Arbiser, A.
Otros Autores: Kamareddine, F., Rios, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04453caa a22004697a 4500
001 PAPER-22698
003 AR-BaUEN
005 20230518205417.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-34447562615 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Arbiser, A. 
245 1 4 |a The weak normalization of the simply typed λse-calculus 
260 |c 2007 
270 1 0 |m Arbiser, A.; Department of Computer Science, University of Buenos Aires, Pabellón I, 1428 Buenos Aires, Argentina; email: arbiser@dc.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J., Explicit Substitutions (1991) Journal of Functional Programming, 1 (4), pp. 375-416 
504 |a Benaissa, Z., Briaud, D., Lescanne, P., Rouyer-Degli, J., λν, a calculus of explicit substitutions which preserves strong normalisation (1996) Functional Programming, 6 (5) 
504 |a P.-L. Curien. Categorical Combinators, Sequential Algorithms and Functional Programming. Pitman, 1986. Revised edition, Birkhäuser (1993); Curien, P.-L., Hardin, T., Lévy, J.-J., Confluence properties of weak and strong calculi of explicit substitutions (1617) Technical Report RR, , INRIA, Rocquencourt 
504 |a de Bruijn, N., Lambda-Calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser Theorem (1972) Indag. Mat, 34 (5), pp. 381-392 
504 |a Goubault-Larrecq, J., A proof of weak termination of the simply typed λσ-calculus (1998) LNCS, 1512, pp. 134-151. , Proc. Int. Workshop on Types for Proofs and Programs TYPES'96 
504 |a Guillaume, B., (1999) Un calcul des substitutions avec étiquettes, , PhD thesis, Université de Savoie, Chambéry, France 
504 |a Kamareddine, F., Ríos, A., Extending a λ-calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms (1997) Journal of Functional Programming, 7 (4), pp. 395-420 
504 |a Kamareddine, F., Ríos, A., Relating the λσ- and λs-styles of explicit substitutions (2000) Logic and Computation, 10 (3), pp. 349-380 
504 |a Ríos, A., (1993) Contribution à l'étude des λ-calculs avec substitutions explicites, , PhD thesis, Université de Paris 7 
520 3 |a In this paper, we show the weak normalization (WN) of the simply-typed λse-calculus with open terms where abstractions are decorated with types, and metavariables, de Bruijn indices and updating operators are decorated with environments. We show a proof of WN using the λωe-calculus, a calculus isomorphic to λse→. This proof is strongly influenced by Goubault-Larrecq's proof of WN for the λσ-calculus but with subtle differences which show that the two styles require different attention. Furthermore, we give a new calculus λω′e which works like λse but which is closer to λσ than λωe. For both λωe and λω′e we prove WN for typed semi-open terms (i.e. those which allow term variables but no substitution variables), unlike the result of Goubault-Larrecq which covered all λσ open terms. © The Author, 2007. Published by Oxford University Press. All rights reserved.  |l eng 
593 |a Department of Computer Science, University of Buenos Aires, Pabellón I, 1428 Buenos Aires, Argentina 
593 |a School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom 
690 1 0 |a EXPLICIT SUBSTITUTION 
690 1 0 |a LAMBDA CALCULUS 
690 1 0 |a NORMALIZATION 
690 1 0 |a SIMPLE TYPING 
700 1 |a Kamareddine, F. 
700 1 |a Rios, A. 
773 0 |d 2007  |g v. 15  |h pp. 121-147  |k n. 2  |p Logic J. IGPL  |x 13670751  |t Logic Journal of the IGPL 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-34447562615&doi=10.1093%2fjigpal%2fjzm003&partnerID=40&md5=b5b0ac87eff4b709b84cd661082ad8e3  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1093/jigpal/jzm003  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_13670751_v15_n2_p121_Arbiser  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_13670751_v15_n2_p121_Arbiser  |y Registro en la Biblioteca Digital 
961 |a paper_13670751_v15_n2_p121_Arbiser  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83651