Zernike expansion coefficients: Rescaling and decentring for different pupils and evaluation of corneal aberrations

An analytical method to convert the set of Zernike coefficients that fits the wavefront aberration for a pupil into another corresponding to a contracted and horizontally translated pupil is proposed. The underlying selection rules are provided and the resulting conversion formulae for a seventh-ord...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Comastri, Silvia Ana Elva
Otros Autores: Pérez, Liliana Inés, Pérez, Gervasio Daniel, Martin, Gabriel, Bastida, Karina Beatriz
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09573caa a22009257a 4500
001 PAPER-22693
003 AR-BaUEN
005 20250829112232.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33847697378 
030 |a JOAOF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Comastri, Silvia Ana Elva 
245 1 0 |a Zernike expansion coefficients: Rescaling and decentring for different pupils and evaluation of corneal aberrations 
260 |c 2007 
270 1 0 |m Comastri, S.A.; Laboratorio de Óptica, Departamento de Física, Ciudad Universitaria, Pabellón I, Nũez, (C1428EGA) Buenos Aires, Argentina; email: comastri@df.uba.ar 
504 |a Born M, Wolf B, (1987) Principles of Optics 
504 |a Linfoot E H, (1958) Recent Advances in Optics 
504 |a Goodman J W, (1996) Introduction to Fourier Optics 
504 |a Malacara D, (1978) Optical Shop Testing 
504 |a Hopkins H H, Image formation by a general optical system. 1. General theory (1985) Appl. Opt., 24 (16), pp. 2491-2505 
504 |a Wang J Y, Silva D E, Wave-front interpretation with Zernike polynomials (1980) Appl. Opt., 19 (9), pp. 1510-1518 
504 |a Comastri S A, Simon J M, Field derivative of the variance of wavefront aberration (1989) J. Mod. Opt., 36 (8), pp. 1073-1091 
504 |a Comastri S A, Simon J M, Blendowske R, Generalized sine condition for image-forming systems with centering errors (1999) J. Opt. Soc. Am., 16 (3), pp. 602-611 
504 |a Wilson M, Campbell M, Simonet P, Changes of pupil centration with change of illumination and pupil size (1992) Optom. Vis. Sci., 69 (2), pp. 129-136 
504 |a Rynders M, Lidkea B, Chisholm W, Thibos L N, Statistical distribution of foveal transverse chromatic aberration, pupil centration and angle ψ in a population of young adult eyes (1995) J. Opt. Soc. Am., 12 (10), pp. 2348-2357 
504 |a Mandell R B, Chiang C S, Klein S A, Location of the major corneal reference points (1995) Optom. Vis. Sci., 72 (11), pp. 776-784 
504 |a Artal P, Marcos S, Iglesias I, Green D G, Optical modulation transfer and contrast sensitivity with decentered small pupils in the human eye (1996) Vis. Res., 36 (22), pp. 3575-3586 
504 |a Liang J, Williams D R, Aberrations and retinal image quality of the normal human eye (1997) J. Opt. Soc. Am., 14 (11), pp. 2873-2883 
504 |a Guirao A, Gonzalez C, Redondo M, Geragbty E, Norrby S, Artal P, Average optical performance of the human eye as a function of age in a normal population (1999) Invest. Opthalmol. Vis. Sci., 40, pp. 203-213 
504 |a Thibos L N, A VSIA-sponsored effort to develop methods and standards for the comparison of the wave-front aberration structure of the eye between devices and laboratories (1999) Vision Sciences and its Applications, pp. 236-239 
504 |a Applegate R A, Thibos L N, Bradley A, Marcos S, Roorda A, Salmon T O, Atchison D A, Reference axis selection: subcommittee report of the OSA working group to establish standards for measurement and reporting of optical aberrations of the eye (2000) J. Refract. Surg., 16, pp. 656-658 
504 |a Thibos, L.N., Applegate, R.A., Schwiegerling, J.T., Webb, R., (2000) VSIA Standards Taskforce Members 
504 |a Guirao A, Artal P, Corneal wave aberration from videokeratography: Accuracy and limitations of the procedure (2000) J. Opt. Soc. Am., 17 (6), pp. 955-965 
504 |a Applegate R A, Hilmantel G, Howland H C, Tu E Y, Starck T, Zayac E J, Corneal first surface optical aberrations and visual performance (2000) J. Refract. Surg., 16, pp. 507-514 
504 |a Guirao A, Williams D R, Cox I G, Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher order aberrations (2001) J. Opt. Soc. Am., 18 (5), pp. 1003-1015 
504 |a Porter J, Guirao A, Cox I G, Williams D, Monochromatic aberrations of the human eye in a large population (2001) J. Opt. Soc. Am., 18 (8), pp. 1793-1803 
504 |a Moreno Barriuso E, Marcos S, Navarro R, Burns S, Comparing laser ray tracing, the spatially resolved refractometer and the Hartmann-Shack sensor to measure the ocular wave aberration (2001) Optom. Vis. Sci., 78 (3), pp. 152-156 
504 |a Marcos S, Aberrations and visual performance following standard laser vision correction (2001) J. Refract. Surg., 17, pp. 596-601 
504 |a Marcos S, Barbero S, Llorente L, Merayo-Lloves J, Optical response to myopic LASIK surgery from total and corneal aberration measurements (2001) Invest. Ophthalmol. Vis. Sci., 42, pp. 3349-3356 
504 |a Barbero S, Marcos S, Merayo-Lloves J, Corneal and total optical aberrations in a unilateral aphakic patient (2002) J. Cataract Refract. Surg., 28 (9), pp. 1594-1600 
504 |a Barbero S, Marcos S, Merayo-Lloves J, Moreno Barriuso E, Validation of the estimation of corneal aberrations from videokeratography in keratoconus (2002) J. Refract. Surg., 18, pp. 263-269 
504 |a Schwiegerling J, Scaling Zernike expansion coefficients to different pupil sizes (2002) J. Opt. Soc. Am., 19 (10), pp. 1937-1945 
504 |a Navarro R, Nestares O, Antona B, Hernandez J, Predicting visual acuity from measured ocular aberrations (2002) Proc. SPIE, 4829, pp. 971-972 
504 |a Hamam H, An interactive web-based tool for teaching optics and vision (2003) Opt. Photonics News, 14, pp. 30-34 
504 |a Campbell C E, Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed (2003) J. Opt. Soc. Am., 20 (2), pp. 209-217 
504 |a Comastri S A, Echarri R, Pfortner T, Correlation between visual acuity and pupil size (2004) Proc. SPIE, 5622, pp. 1341-1346 
504 |a Marcos S, Barbero S, Jimenez Alfaro I, Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses (2005) J. Refract. Surg., 21, pp. 223-235 
504 |a Comastri S A, Martin G, Pfortner T, Analysis of pupil and corneal wave aberration data supplied by the SN CT 1000 topography system (2006) Opt. Int. J. Light Electron Opt., 117 (11), pp. 537-545 
504 |a Bara S, Arines J, Ares J, Prado P, Direct transformation of Zernike eye aberration coefficients between scaled, rotated and/or displaced pupils (2006) J. Opt. Soc. Am., 23 (9), pp. 2061-2066 
506 |2 openaire  |e Política editorial 
520 3 |a An analytical method to convert the set of Zernike coefficients that fits the wavefront aberration for a pupil into another corresponding to a contracted and horizontally translated pupil is proposed. The underlying selection rules are provided and the resulting conversion formulae for a seventh-order expansion are given. These formulae are applied to calculate corneal aberrations referred to a given pupil centre in terms of those referred to the keratometric vertex supplied by the SN CT1000 topographer. Four typical cases are considered: a sphere and three eyes - normal, keratoconic and post-LASIK. When the pupil centre is fixed and the pupil diameter decreases from 6 mm to the photopic natural one, leaving aside piston, tilt and defocus, the difference between the root mean square wavefront error computed with the formulae and the topographer is less than 0.04 μm. When the pupil diameter is kept equal to the natural one and the pupil centre is displaced, coefficients vary according to the eye. For a 0.3μmm pupil shift, the variation of coma is at most 0.35μm and that of spherical aberration 0.01μm. © IOP Publishing Ltd.  |l eng 
593 |a Laboratorio de Óptica, Departamento de Física, Ciudad Universitaria, Pabellón I, Nũez, (C1428EGA) Buenos Aires, Argentina 
593 |a Consejo Nacional de Investigaciones Científicas y Técnicas, (C1033AAJ) Buenos Aires, Argentina 
593 |a Grupo Óptica de Interfaces, Departamento de Física, Universidad de Buenos Aires, (C1063ACV) Buenos Aires, Argentina 
593 |a QLOGIC SA, (C1117ABE) Buenos Aires, Argentina 
593 |a Laboratorio de Óptica y Dimensional, Departamento de Física y Metrología, Instituto Nacional de Tecnología Industrial, (B1650WAB) Buenos Aires, Argentina 
690 1 0 |a OCULAR ABERRATIONS 
690 1 0 |a PUPIL SIZE AND CENTRING 
690 1 0 |a ZERNIKE COEFFICIENTS 
690 1 0 |a OPTICAL TRANSITIONS 
690 1 0 |a TOPOGRAPHY 
690 1 0 |a WAVE EFFECTS 
690 1 0 |a CORNEAL ABERRATIONS 
690 1 0 |a KERATOMETRIC VERTEX 
690 1 0 |a PUPILS 
690 1 0 |a ZERNIKE COEFFICIENTS 
690 1 0 |a OPTICAL SYSTEMS 
700 1 |a Pérez, Liliana Inés 
700 1 |a Pérez, Gervasio Daniel 
700 1 |a Martin, Gabriel 
700 1 |a Bastida, Karina Beatriz 
773 0 |d 2007  |g v. 9  |h pp. 209-221  |k n. 3  |p J Opt A Pure Appl Opt  |x 14644258  |w (AR-BaUEN)CENRE-5726  |t Journal of Optics A: Pure and Applied Optics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33847697378&doi=10.1088%2f1464-4258%2f9%2f3%2f001&partnerID=40&md5=5f96a7391561ee2db59c459784d07d23  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1088/1464-4258/9/3/001  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_14644258_v9_n3_p209_Comastri  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14644258_v9_n3_p209_Comastri  |y Registro en la Biblioteca Digital 
961 |a paper_14644258_v9_n3_p209_Comastri  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83646