Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia)

Sequence variability of RPCS (repetitive PuvII Ctenomys sequence), the major satellite DNA of octodontid Ctenomys rodents, was analysed in species belonging to three groups of species representing the two patterns of karyotypic evolution in the genus: stable and dynamic karyotypes among closely rela...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ellingsen, A.
Otros Autores: Slamovits, C.H, Rossi, M.S
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2007
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13689caa a22012977a 4500
001 PAPER-22668
003 AR-BaUEN
005 20230518205415.0
008 190411s2007 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33947714794 
024 7 |2 Molecular Sequence Numbers  |a GENBANK: DQ444617, DQ444618, DQ444619, DQ444620, DQ444621, DQ444622, DQ444623, DQ444624, DQ444625, DQ444626, DQ444627, DQ444628, DQ444629, DQ444630, DQ444631, DQ444632, DQ444633, DQ444634, DQ444635, DQ444636, DQ444637, DQ444638, DQ444639, DQ444640, DQ444641, DQ444642, DQ444643, DQ444644, DQ444645, DQ444646, DQ444647, DQ444648, DQ444649, DQ444650, DQ444651, DQ444652, DQ459094, DQ459095, DQ459096, DQ459097, DQ459098, DQ459099, DQ459100, DQ459101, DQ459102, DQ459103, DQ459104, DQ459105, DQ459106, DQ459107, DQ459108, DQ459109, DQ459110, DQ459111, DQ459112, DQ459113, DQ459114, DQ459115, DQ459116, DQ459117, DQ459118, DQ459119, EF156365; 
024 7 |2 cas  |a Deoxyribonucleases, Type II Site-Specific, EC 3.1.21.4; DNA, Satellite; endodeoxyribonuclease PvuII, EC 3.1.21.- 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a GENED 
100 1 |a Ellingsen, A. 
245 1 0 |a Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia) 
260 |c 2007 
270 1 0 |m Rossi, M.S.; IFIBYNE, CONICET, Laboratorio de Fisiología y Biología Molecular, Pabellón II, EHA1428, Buenos Aires, Argentina; email: srossi@fbmc.fcen.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Aladjem, M.I., Fanning, E., The replicon revisited: an old model learns new tricks in metazoan chromosomes (2004) EMBO Rep., 5, pp. 686-691 
504 |a Arnason, U., Gretarsdottir, S., Widegren, B., Mysticete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite (1992) Mol. Biol. Evol., 9, pp. 1018-1028 
504 |a Averbeck, K.T., Eickbush, T.H., Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus (2005) Genetics, 171, pp. 1837-1846 
504 |a Bradley, R.D., Wichman, H.A., Rapidly evolving repetitive DNAs in a conservative genome: a test of factors that affect chromosomal evolution (1994) Chomosom. Res., 2, pp. 354-360 
504 |a Bruvo, B., Pons, J., Ugarković, D., Juan, C., Petitpierre, E., Plohl, M., Evolution of low-copy number and major satellite DNA sequences coexisting in two Pimelia species-groups (Coleoptera) (2003) Gene, 312, pp. 85-94 
504 |a Coghlan, A., Eichler, E.E., Oliver, S.G., Paterson, A.H., Stein, L., Chromosome evolution in eukaryotes: a multi-kingdom perspective (2005) Trends Genet., 21, pp. 673-682 
504 |a Dover, G.A., Molecular drive (2002) Trends Genet., 18, pp. 587-589 
504 |a Elder Jr., J.F., Turner, B.J., Concerted evolution of repetitive DNA sequences in eukaryotes (1995) Q. Rev. Biol., 70, pp. 297-320 
504 |a Fry, K., Salser, W., Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents (1977) Cell, 12, pp. 1069-1084 
504 |a Hartmann, N., Scherthan, H., Characterization of ancestral chromosome fusion points in the Indian muntjac deer (2004) Chromosoma, 112, pp. 213-220 
504 |a Kumar, S., Tamura, K., Nei, M., MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment (2004) Brief. Bioinform., 5, pp. 150-163 
504 |a Luchetti, A., Marino, A., Scanabissi, F., Mantovani, B., Genomic dynamics of a low-copy-number satellite DNA family in Leptestheria dahalacensis (Crustacea, Branchiopoda, Conchostraca) (2004) Gene, 342, pp. 313-320 
504 |a Meštrović, N., Plohl, M., Mravinac, B., Ugarković, D., Evolution of satellite DNAs from the genus Palorus - experimental evidence for the "library" hypothesis (1998) Mol. Biol. Evol., 15, pp. 1062-1068 
504 |a Mravinac, B., Plohl, M., Ugarković, D., Conserved patterns in the evolution of Tribolium satellite DNAs (2004) Gene, 332, pp. 169-177 
504 |a Mravinac, B., Plohl, M., Ugarković, D., Preservation and high sequence conservation of satellite DNAs suggest functional constraints (2005) J. Mol. Evol., 61, pp. 542-550 
504 |a Nijman, I.J., Lenstra, J.A., Mutation and recombination in cattle satellite DNA: a feedback model for the evolution of satellite DNA repeats (2001) J. Mol. Evol., 52, pp. 361-371 
504 |a Pesce, C.G., Rossi, M.S., Muro, A.F., Reig, O.A., Zorzópulos, J., Kornblihtt, A.R., Binding of nuclear factors to a satellite DNA of retroviral origin with marked differences in copy number among species of the rodent Ctenomys (1994) Nucleic Acids Res., 22, pp. 656-661 
504 |a Picariello, O., Feliciello, I., Bellinello, R., Chinali, G., S1 satellite DNA as a taxonomic marker in brown frogs: molecular evidence that Rana graeca graeca and Rana graeca italica are different species (2002) Genome, 45, pp. 63-70 
504 |a Posada, D., Crandall, K.A., MODELTEST: testing the model of DNA substitution (1998) Bioinformatics, 14, pp. 817-818 
504 |a Raghuraman, M.K., Replication dynamics of the yeast genome (2001) Science, 294, pp. 115-121 
504 |a Redi, C.A., Garagna, S., Zacharias, H., Zuccotti, M., Capanna, E., The other chromatin (2001) Chromosoma, 110, pp. 136-147 
504 |a Reig, O.A., Karyotypic repatterning as a triggering factor in cases of explosive speciation (1989) Evolutionary Biology of Unstable Populations, pp. 246-289. , Fontdevila A. (Ed), Springer Verlag, Berlin, Germany 
504 |a Reig, O.A., Busch, C., Ortells, M.O., Contreras, J.R., An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys (1990) Evolutionary Biology of Subterranean Rodents, pp. 71-96. , Nevo E., and Reig O.A. (Eds), Alan R. Liss, New York 
504 |a Reig, O.A., Massarini, A.L., Ortells, M.O., Barros, M.A., Tiranti, S.I., Dyzenchauz, F.J., New karyotypes and C-banding patterns of the subterranean rodents of the genus Ctenomys (Caviomorpha, Octodontidae) (1992) Argent. Mamm., 56, pp. 603-623 
504 |a Robles, F., de la Herrán, R., Ludwig, A., Ruiz Rejon, C., Ruiz Rejón, M., Garrido-Ramos, M.A., Evolution of ancient satellite DNAs in sturgeon genomes (2004) Gene, 338, pp. 133-142 
504 |a Rossi, M.S., Reig, O.A., Zorzópulos, J., Evidence for rolling-circle replication in a major satellite DNA from the South American rodents of the genus Ctenomys (1990) Mol. Biol. Evol., 7, pp. 340-350 
504 |a Rossi, M.S., Reig, O.A., Zorzópulos, J., A major satellite DNA from the South American rodents of the genus Ctenomys (1993) Z. Säugetierkd., 58, pp. 244-251 
504 |a Rossi, M.S., Pesce, C.G., Reig, O.A., Kornblihtt, A.R., Zorzópulos, J., Retroviral-like features in the repetitive unit of the major satellite DNA from the South American rodents of the genus Ctenomys (1993) DNA Seq., 3, pp. 379-381 
504 |a Rossi, M.S., Redi, C.A., Viale, G., Massarini, A.L., Capanna, E., Chromosomal distribution of the major satellite DNA of South American rodents of the genus Ctenomys (1995) Cytogenet. Cell Genet., 69, pp. 179-184 
504 |a Rozas, J., Rozas, R., DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis (1999) Bioinformatics, 15, pp. 174-175 
504 |a Slamovits, C.H., Cook, J.A., Lessa, E.P., Rossi, M.S., Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach (2001) Mol. Biol. Evol., 18, pp. 1708-1719 
504 |a Steinberg, E., Patton, K., Genetic structure and the geographic of speciation in subterranean rodents; opportunities and constrains for evolutionary diversification (2000) Life Underground: the Biology of Subterranean Rodents, pp. 301-331. , Lacey E., Patton J.L., and Cameron G. (Eds), University of Chicago Press, Chicago, U.S.A 
504 |a Strachan, T., Webb, D., Dover, G.A., Transition stages of molecular drive in multiple-copy DNA families in Drosophila (1985) EMBO J., 4, pp. 1701-1708 
504 |a Swofford, D.L., (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4 Sinauer Associates. Sunderland, Mass, USA 
504 |a Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res., 25, pp. 4876-4882 
504 |a Ugarković, D., Plohl, M., Variation in satellite DNA profiles-causes and effects (2002) EMBO J., 21, pp. 5955-5959 
504 |a Verzi, D.H., The dental evidence on the differentiation of the ctenomyine rodents (Caviomorpha, Octodontidae, Ctenomyidae) (1999) Acta Theriol., 44, pp. 263-282 
504 |a Verzi, D.H., Morphological evolution patterns in Ctenomyinae (Rodentia, Octodontidae) (2002) J. Neotrop. Mammal., 9, pp. 309-328 
520 3 |a Sequence variability of RPCS (repetitive PuvII Ctenomys sequence), the major satellite DNA of octodontid Ctenomys rodents, was analysed in species belonging to three groups of species representing the two patterns of karyotypic evolution in the genus: stable and dynamic karyotypes among closely related species. The studied species represent the overall range of RPCS copy number (2000-6.6 × 106 copies per haploid genome) in the genus. RPCS sequence was characterised by PCR amplification of the genomic consensus sequence and cloned monomers. Our results suggest that RPCS genomic consensus sequence variability correlates with RPCS copy number stability and karyotypic stastis, but not with high or low RPCS copy number values. In contrast, the RPCS gcs shows a mutational profile that is similar across all analysed species. Our data suggest that an RPCS ancestral library of variants was maintained through the cladogenesis of the genus. There is also evidence pointing to the simultaneous contribution of processes of concerted evolution that resulted in a reduced representation of some ancestral variants and their partial replacement for new ones. In addition, analysis of distribution of the variability along the monomer suggests that subsequences of the RPCS are subject to some degree of constraint, probably driven by the recent replicative activity of RPCS in species with high copy number. © 2007 Elsevier B.V. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: African University of Science and Technology 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: This work was supported by grants from the University of Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina (CONICET), awarded to M.S.R. DNA sequencing was partially supported by a Sigma Xi Grant in Aid to C.H.S. A.E. carried out the present work as part of his Master's degree at the University of Science and Technology of Trondheim, Norway. C.H.S. was supported by a doctoral fellowship awarded by CONICET. M. S. R. is a career investigator of the CONICET. We would like to thank two anonymous reviewers for helpful comments on the manuscript. 
593 |a IFIBYNE, CONICET, Laboratorio de Fisiología y Biología Molecular, Pabellón II, EHA1428, Buenos Aires, Argentina 
690 1 0 |a CONCERTED EVOLUTION 
690 1 0 |a CTENOMYS 
690 1 0 |a SATELLITE DNA 
690 1 0 |a SATELLITE DNA 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a CLADOGENESIS 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a CORRELATION ANALYSIS 
690 1 0 |a DNA SEQUENCE 
690 1 0 |a GENE AMPLIFICATION 
690 1 0 |a GENE NUMBER 
690 1 0 |a GENE REPLICATION 
690 1 0 |a GENETIC STABILITY 
690 1 0 |a GENOME 
690 1 0 |a KARYOTYPING 
690 1 0 |a MOLECULAR CLONING 
690 1 0 |a NONHUMAN 
690 1 0 |a NUCLEOTIDE SEQUENCE 
690 1 0 |a POLYMERASE CHAIN REACTION 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a RODENT 
690 1 0 |a AMINO ACID SEQUENCE 
690 1 0 |a ANIMALS 
690 1 0 |a BASE SEQUENCE 
690 1 0 |a DEOXYRIBONUCLEASES, TYPE II SITE-SPECIFIC 
690 1 0 |a DNA, SATELLITE 
690 1 0 |a EVOLUTION, MOLECULAR 
690 1 0 |a GENE AMPLIFICATION 
690 1 0 |a GENE LIBRARY 
690 1 0 |a MOLECULAR SEQUENCE DATA 
690 1 0 |a PHYLOGENY 
690 1 0 |a RODENTIA 
690 1 0 |a SEQUENCE HOMOLOGY 
690 1 0 |a CTENOMYS 
690 1 0 |a OCTODONTIDAE 
690 1 0 |a RODENTIA 
700 1 |a Slamovits, C.H. 
700 1 |a Rossi, M.S. 
773 0 |d 2007  |g v. 392  |h pp. 283-290  |k n. 1-2  |p Gene  |x 03781119  |w (AR-BaUEN)CENRE-4803  |t Gene 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33947714794&doi=10.1016%2fj.gene.2007.01.013&partnerID=40&md5=993e8dddac882cd9d4236742399424bf  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.gene.2007.01.013  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03781119_v392_n1-2_p283_Ellingsen  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03781119_v392_n1-2_p283_Ellingsen  |y Registro en la Biblioteca Digital 
961 |a paper_03781119_v392_n1-2_p283_Ellingsen  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83621