Structure and reactivity of synthetic Co-substituted goethites

A set of synthetic goethites were prepared from Fe3+- and Co2+-nitrate solutions in alkaline media with a Co/(Co + Fe) ratio (xCo) up to 10 mol%. The structural characterization of the resultant solid phases was carried out by X-ray diffraction (XRD). XRD analyses showed that in preparations with xC...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Alvarez, M.
Otros Autores: Sileo, E.E, Rueda, E.H
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 09485caa a22008897a 4500
001 PAPER-22421
003 AR-BaUEN
005 20230518205359.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-43149113254 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Alvarez, M. 
245 1 0 |a Structure and reactivity of synthetic Co-substituted goethites 
260 |c 2008 
270 1 0 |m Alvarez, M.; Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB Bahía Blanca, Argentina; email: alvarezm@criba.edu.ar 
506 |2 openaire  |e Política editorial 
504 |a Alloway, B.J., (1990) Heavy Metals in Soils, , 339 p. Blackie Academic and Professional, Glasgow 
504 |a Alvarez, M., Rueda, E.H., Sileo, E.E., Structural characterization and chemical reactivity of synthetic Mn-goethites and hematites (2006) Chemical Geology, 231, pp. 288-299 
504 |a Alvarez, M., Rueda, E.H., Sileo, E.E., Simultaneous incorporation of Mn and Al in the goethite structure (2007) Geochimica et Cosmochimica Acta, 71, pp. 1009-1020 
504 |a Cornell, R.M., Simultaneous incorporation of Mn, Ni, and Co in the goethite (α-FeOOH) structure (1991) Clay Minerals, 2, pp. 427-430 
504 |a Cornell, R.M., Giovanoli, R., Effect of cobalt on the formation of crystalline iron oxides from ferrihydrite in alkaline media (1989) Clays and Clay Minerals, 37, pp. 65-70 
504 |a Cornell, R.M., Schwertmann, U., The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses (1996) VCH, Weinheim (Federal Republic of Germany), , 573 p 
504 |a Cornell, R.M., Posner, A.M., Quirk, J.P., Crystal morphology and the dissolution of goethite (α-FeOOH) (1974) Journal of Inorganic and Nuclear Chemistry, 36, pp. 1937-1946 
504 |a Finger, L.W., Cox, D.E., Jephcoat, A.P., A correction for powder diffraction peak asymmetry due to axial divergence (1994) Journal of Applied Crystallography, 27, pp. 892-900 
504 |a Gasser, U.G., Jeanroy, E., Muslin, C., Barres, O., Nuesch, R., Bethelin, J., Herbillon, A.J., Properties of synthetic goethites with Co for Fe substitution (1996) Clay Minerals, 31, pp. 465-476 
504 |a Gerth, J., Unit cell dimensions of pure and trace metal-associated goethites (1990) Geochimica et Cosmochimica Acta, 54, pp. 363-371 
504 |a Ishikawa, T., Yamashita, H., Yasukawa, A., Kandori, K., Nakayama, T., Yuse, F., Structures of Ti(IV)-doped (α-FeOOH particles (2000) Journal of Materials Chemistry, 10, pp. 543-557 
504 |a Iwasaki, K., Yamamura, T., Whisker-like goethite nanoparticles containing cobalt synthesized in a wet process (2002) Materials Transactions, 43, pp. 2097-2103 
504 |a Kühnel, R.A., Roorda, H.J., Steensma, J.J., The crystallinity of minerals. A new variable in pedogenic processes: A study of goethite and associated silicates in laterites (1975) Clays and Clay Minerals, 23, pp. 349-354 
504 |a Larson, A.C., Von Dreele, R.B., General Structure Analysis System (GSAS) (2004) Los Alamos National Laboratory Report LAUR, , 86-748 
504 |a Lim-Nuñez, R.S.L., Gilkes, R.J., Acid dissolution of synthetic metal-containing goethite and hematite (1987) Proceedings of the International Clay Conference, pp. 197-204. , Denver, p 
504 |a Murad, E., Schwertmann, U., The influence of aluminum substitution and crystallinity on the Mössbauer spectra of goethite (1983) Clay Minerals, 18, pp. 301-312 
504 |a Norrish, K., Geochemistry and mineralogy of trace elements (1975) Trace Elements in Soil-Plant-Animal System, pp. 55-81. , A.R. Nicholas and D.J. Egan, Eds, Academic Press, New York 
504 |a Nuñez, N.O., Tartaj, P., Morales, M.P., Pozas, R., Ocaña, M., Serna, C.J., Preparation, characterization and magnetic properties of Fe-based alloy particles with elongated morphology (2003) Chemistry of Materials, 15, pp. 3558-3563 
504 |a Pozas, R., Ocaña, M., Morales, M.P., Serna, C.J., Uniform nanosized goethite particles obtained by aerial oxidation in the FeSO4-Na2CO3 system (2002) Journal of Colloid and Interface Science, 254, pp. 87-94 
504 |a Pozas, R., Rojas, T.C., Ocaña, M., Serna, C.J., The nature of Co in synthetic Co-substituted goethites (2004) Clays and Clay Minerals, 52, pp. 760-766 
504 |a Rietveld, H.M., A profile refinement method for nuclear and magnetic structures (1969) Journal of Applied Crystallography, 2, pp. 65-71 
504 |a Schulze, D.G., Schwertmann, U., The influence of aluminum on iron oxides. X. Properties of Al-substituted goethites (1984) Clay Minerals, 19, pp. 521-539 
504 |a Schwertmann, U., The influence of aluminum on iron oxides. IX. Dissolution of Al-goethites in 6 M HCl (1984) Clay Minerals, 22, pp. 83-92 
504 |a Schwertmann, U., Taylor, R.M., Iron oxides (1989) Minerals in Soil Environments, pp. 380-438. , J.B Dixon and S.B. Weed, Eds, Soil Science Society of America, Madison, Wisconsin 
504 |a Shannon, R.D., Prewitt, C.T., Effective ionic radii in oxides and fluorides (1969) Acta Crystallographica, B25, pp. 925-946 
504 |a Sidhu, P.S., Gilkes, R.J., Cornell, R.M., Posner, A.M., Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids (1981) Clays and Clay Minerals, 29, pp. 269-276 
504 |a Sileo, E.E., Alvarez, M., Rueda, E.H., Structural studies on the manganese for iron substitution in the synthetic goethite-jacobsite system. The International (2001) Journal of Inorganic Materials, 3, pp. 271-279 
504 |a Sileo, E.E., Ramos, A.Y., Magaz, G.E., Blesa, M.A., Long-range vs. Short-range ordering in synthetic Cr-substituted goethites (2004) Geochimica et Cosmochimica Acta, 68, pp. 3053-3063 
504 |a Stephens, P.W., Phenomenological model of anisotropic broadening in powder diffraction (1999) Journal of Applied Crystallography, 32, pp. 281-289 
504 |a Stiers, W., Schwertmann, U., Evidence for manganese substitution in synthetic goethite (1985) Geochimica et Cosmochimica Acta, 49, pp. 1909-1911 
504 |a Sun, X., Doner, H.E., Zavarin, M., Spectroscopy study of arsenite [As(III)] oxidation on Mn-substituted goethite (1999) Clays and Clay Minerals, 4, pp. 474-480 
504 |a Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., Wolski, W., Neutron diffraction studies of α-FeOOH (1968) Physica Status Solidi, 26, pp. 429-434 
504 |a Thompson, P., Cox, D.E., Hastings, J.B., Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 (1987) Journal of Applied Crystallography, 20, pp. 79-83 
504 |a Wolska, E., Schwertmann, U., Nonstoichiometric structures during dehydroxylation of goethite (1989) Zeitschrift für Kristallographie, 189, pp. 223-237 
520 3 |a A set of synthetic goethites were prepared from Fe3+- and Co2+-nitrate solutions in alkaline media with a Co/(Co + Fe) ratio (xCo) up to 10 mol%. The structural characterization of the resultant solid phases was carried out by X-ray diffraction (XRD). XRD analyses showed that in preparations with xCo <10 mol%, Co-substituted goethite was the only crystalline phase present. Atomic and cell parameters for the samples synthesized were obtained by the Rietveld refinement of the XRD data, and showed that the unit cell in the goethite-like phase is contracted as a function of xCo. Little deviation from the Vegard rule was observed for all unit-cell parameters. Cobalt substitution produces an increase in the surface area of the goethite, as well as an increment in the dehydroxylation temperature. The acid dissolution of all Co-goethites showed an increase in dissolution rate with the Co content, and a congruent behavior was observed. The activation energy for dissolution was obtained two samples. A modified first-order Kabai equation best describes the dissolution data.  |l eng 
593 |a Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, B8000CPB Bahía Blanca, Argentina 
593 |a INQUIMAE, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires, Argentina 
690 1 0 |a ACID DISSOLUTION 
690 1 0 |a CO-GOETHITE 
690 1 0 |a ISOMORPHOUS SUBSTITUTION 
690 1 0 |a RIETVELD REFINEMENT 
690 1 0 |a CHEMICAL COMPOSITION 
690 1 0 |a COBALT 
690 1 0 |a CRYSTAL CHEMISTRY 
690 1 0 |a CRYSTAL STRUCTURE 
690 1 0 |a DISSOLUTION 
690 1 0 |a GOETHITE 
690 1 0 |a NITRATE 
690 1 0 |a PHASE TRANSITION 
690 1 0 |a RIETVELD ANALYSIS 
690 1 0 |a X-RAY DIFFRACTION 
700 1 |a Sileo, E.E. 
700 1 |a Rueda, E.H. 
773 0 |d 2008  |g v. 93  |h pp. 584-590  |k n. 4  |p Am. Mineral.  |x 0003004X  |w (AR-BaUEN)CENRE-65  |t American Mineralogist 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-43149113254&doi=10.2138%2fam.2008.2608&partnerID=40&md5=bf2a566fc4eba4154addf110f4e149b2  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.2138/am.2008.2608  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0003004X_v93_n4_p584_Alvarez  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0003004X_v93_n4_p584_Alvarez  |y Registro en la Biblioteca Digital 
961 |a paper_0003004X_v93_n4_p584_Alvarez  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83374