A general tumour control probability model for non-uniform dose distributions
Perfectly uniform dose distributions over target volumes are almost impossible to achieve in clinical practice, due to surrounding normal tissues dose constraints that are commonly imposed to treatment plans. This article introduces a new approach to compute tumour control probabilities (TCPs) under...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2008
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 06020caa a22007817a 4500 | ||
|---|---|---|---|
| 001 | PAPER-22392 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205356.0 | ||
| 008 | 190411s2008 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-45749125230 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a MMBAB | ||
| 100 | 1 | |a González, S.J. | |
| 245 | 1 | 2 | |a A general tumour control probability model for non-uniform dose distributions |
| 260 | |c 2008 | ||
| 270 | 1 | 0 | |m Gonzáles, S.J.; Instrumentación y Control, UEN, Comisión Nacional de Energía Atómica, Avenida Del Libertador 8250, C1429BNP Ciudad de Buenos Aires, Argentina; email: srgonzal@cnea.gov.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a BARTH, R.F., CODERRE, J.A., VICENTE, M.G.H., BLUE, T.E., Boron neutron capture therapy of cancer: Current status and future prospects (2005) Clin. Cancer Res, 11, pp. 3987-4002 | ||
| 504 | |a BENTZEN, S.M., THAMES, H.D., Tumor volume and local control probability: Clinical data and radiobiological interpretations (1996) Int. J. Radiat. Oncol. Biol. Phys, 36, pp. 247-251 | ||
| 504 | |a BRAHME, A., Dosimetric precision requirements in radiation therapy (1984) Acta Radiol. Oncol, 23, pp. 379-391 | ||
| 504 | |a GONZÁLEZ, S.J., BONOMI, M.R., SANTA CRUZ, G.A., BLAUMANN, H.R., CALZETTA LARRIEU, O.A., MENÉNDEZ, P., JIMÉNEZ REBAGLIATI, R., ROTH, B.M.C., First BNCT treatment of a skin melanoma in Argentina: Dosimetric analysis and clinical outcome (2004) Appl. Radiat. Isotopes, 61, pp. 1101-1105 | ||
| 504 | |a KONIJNENBERG, M.W., DEWIT, L.G., MIJNHEER, B.J., RAAIJMAKERS, C.P., WATKINS, P.R., Dose homogeneity in boron neutron capture therapy using an epithermal neutron beam (1995) Radiat. Res, 142, pp. 327-339 | ||
| 504 | |a NIEMIERKO, A., Reporting and analyzing dose distributions: A concept of equivalent uniform dose (1997) Med. Phys, 24, pp. 103-110 | ||
| 504 | |a OVERGAARD, J., OVERGAARD, M., VEJBY HANSEN, P., VON, DER MAASE, H., Some factors of importance in the radiation treatment of malignant melanoma (1986) Radiother. Oncol, 12, pp. 867-872 | ||
| 504 | |a WEBB, S., EVANS, P.M., SWINDELL, W., DEASY, J.O., A proof that uniform dose gives the greatest TCP for fixed integral dose in the planning target volume (1994) Phys. Med. Biol, 39, pp. 2091-2098 | ||
| 504 | |a WEBB, S., NAHUM, A.E., A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density (1993) Phys. Med. Biol, 38, pp. 653-666 | ||
| 520 | 3 | |a Perfectly uniform dose distributions over target volumes are almost impossible to achieve in clinical practice, due to surrounding normal tissues dose constraints that are commonly imposed to treatment plans. This article introduces a new approach to compute tumour control probabilities (TCPs) under inhomogeneous dose conditions. The equivalent subvolume model presented here does not assume independence between cell responses and can be derived from any homogeneous dose TCP model. To check the consistency of this model, some natural properties are shown to hold, including the so-called uniform dose theorem. In the spirit of the equivalent uniform dose (EUD) concept introduced by Niemierko (1997, Med. Phys., 24 , 103-110), the probability-EUD is defined. This concept together with the methodology introduced to compute TCPs for inhomogeneous doses is applied to different uniform dose TCP models. As expected, the TCP takes into account the whole dose distribution over the target volume, but it is influenced more strongly by the low-dose regions. Finally, the proposed methodology and other approaches to the inhomogeneous dose scenario are compared. © The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. |l eng | |
| 593 | |a Instrumentación y Control, UEN, Comisión Nacional de Energía Atómica, Avenida Del Libertador 8250, C1429BNP Ciudad de Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matemática, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina | ||
| 690 | 1 | 0 | |a EQUIVALENT UNIFORM DOSE |
| 690 | 1 | 0 | |a NON-UNIFORM DOSE DISTRIBUTION |
| 690 | 1 | 0 | |a TUMOR CONTROL PROBABILITY |
| 690 | 1 | 0 | |a ACCURACY |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a CANCER CONTROL |
| 690 | 1 | 0 | |a CONCEPTION |
| 690 | 1 | 0 | |a CONTROLLED STUDY |
| 690 | 1 | 0 | |a DOSIMETRY |
| 690 | 1 | 0 | |a INTERMETHOD COMPARISON |
| 690 | 1 | 0 | |a LOW ENERGY RADIATION |
| 690 | 1 | 0 | |a MATHEMATICAL ANALYSIS |
| 690 | 1 | 0 | |a MATHEMATICAL COMPUTING |
| 690 | 1 | 0 | |a MATHEMATICAL MODEL |
| 690 | 1 | 0 | |a METHODOLOGY |
| 690 | 1 | 0 | |a PROBABILITY |
| 690 | 1 | 0 | |a RADIATION DOSE DISTRIBUTION |
| 690 | 1 | 0 | |a RADIATION RESPONSE |
| 690 | 1 | 0 | |a BORON NEUTRON CAPTURE THERAPY |
| 690 | 1 | 0 | |a DOSE-RESPONSE RELATIONSHIP, RADIATION |
| 690 | 1 | 0 | |a HUMANS |
| 690 | 1 | 0 | |a MELANOMA |
| 690 | 1 | 0 | |a MODELS, BIOLOGICAL |
| 690 | 1 | 0 | |a MODELS, STATISTICAL |
| 690 | 1 | 0 | |a POISSON DISTRIBUTION |
| 690 | 1 | 0 | |a PROBABILITY |
| 690 | 1 | 0 | |a RADIATION DOSAGE |
| 690 | 1 | 0 | |a RADIOTHERAPY DOSAGE |
| 690 | 1 | 0 | |a RADIOTHERAPY PLANNING, COMPUTER-ASSISTED |
| 690 | 1 | 0 | |a SKIN NEOPLASMS |
| 700 | 1 | |a Carando, D.G. | |
| 773 | 0 | |d 2008 |g v. 25 |h pp. 171-184 |k n. 2 |p Math. Med. Biol. |x 14778599 |t Mathematical Medicine and Biology | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-45749125230&doi=10.1093%2fimammb%2fdqn012&partnerID=40&md5=c215e280f648102e2dd193a5841410a0 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1093/imammb/dqn012 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_14778599_v25_n2_p171_Gonzalez |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_14778599_v25_n2_p171_Gonzalez |y Registro en la Biblioteca Digital |
| 961 | |a paper_14778599_v25_n2_p171_Gonzalez |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 83345 | ||