Robust low-rank approximation of data matrices with elementwise contamination

We propose a robust method to approximate an n × p data matrix with one of rank q. The method is based on Yohai's regression MM estimates. It is intended to be resistant against the existence of both atypical rows and of scattered atypical cells and also to be able to cope with missing values....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Maronna, R.
Otros Autores: Yohai, V.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08179caa a22008177a 4500
001 PAPER-22347
003 AR-BaUEN
005 20230518205354.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-55149098958 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a TCMTA 
100 1 |a Maronna, R. 
245 1 0 |a Robust low-rank approximation of data matrices with elementwise contamination 
260 |c 2008 
270 1 0 |m Maronna, R.; Faculty of Exact Sciences, University of La Plata, CC 172, La Plata 1900, Argentina; email: rmaronna@mail.retina.ar 
506 |2 openaire  |e Política editorial 
504 |a Alqallaf, F., Van Aelst, S., Yohai, V. J., and Zamar, R. H. (2007), Propagation of Outliers in Multivariate Data, unpublished manuscript, available at http://mate.dm.uba.ar/vyohai/Alqallaf-VanAelst- Yohai-Zamar.pdf; Bay, S.D., The UCI KDD Archive [http://kdd.ics.uci. edu] (1999) University of California Irvine, Dept, , of Information and Computer Science 
504 |a Campbell, N.A., Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation (1980) Applied Statistics, 29, pp. 231-237 
504 |a Croux, C., Haesbroeck, G., Principal Component Analysis Based on Robust Estimators of the Covariance or Correlation Matrix: Influence Functions and Efficiencies (2000) Biometrika, 87, pp. 603-618 
504 |a Croux, C., Ruiz-Gazen, A., A Fast Algorithm for Robust Principal Components Based on Projection Pursuit (1996) Compstat: Proceedings in Computational Statistics, pp. 211-216. , ed. A. Prat, Heidelberg: Physica-Verlag, pp 
504 |a Croux, C., Ruiz-Gazen, A., High-Breakdown Estimators for Principal Components: The Projection-Pursuit Approach Revisited (2005) Journal of Multivariate Analysis, 95, pp. 206-226 
504 |a Croux, C., Filzmoser, P., Pison, G., Rousseeuw, P.J., Fitting Multiplicative Models by Robust Alternating Regressions (2003) Statistics and Computing, 13, pp. 23-36 
504 |a De la Torre, F., Black, M.J., Robust Principal Components Analysis for Computer Vision (2001) Proceedings of the International Conference on Computer Vision, , http://citeseer.ist.psu.edu/torre01robust.html, available at 
504 |a Devlin, S.J., Gnanadesikan, R., Kettenring, J.R., Robust Estimation of Dispersion Matrices and Principal Components (1981) Journal of the American Statistical Association, 76, pp. 354-362 
504 |a Gabriel, K.R., Zamir, S., Lower-Rank Approximation of Matrices by Least Squares With Any Choice of Weights (1979) Technometrics, 21, pp. 489-498 
504 |a Hubert, M., Rousseeuw, P.J., Vanden Branden, K., ROBPCA: A New Approach to Robust Principal Component Analysis (2005) Technometrics, 47, pp. 64-79 
504 |a Janssens, K., Deraedt, I., Freddy, A., Veekman, J., Composition of 15th-17th Century Archaeological Glass Vessels Excavated in Antwerp, Belgium (1998) Mikrochimica Acta, 15 (SUPPL.), pp. 253-267 
504 |a Li, G., Chen, Z., Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo (1985) Journal of the American Statistical Association, 80, pp. 759-766 
504 |a Liu, L., Hawkins, D.M., Ghosh, S., Young, S.S., Robust Singular Value Decomposition Analysis of Microarray Data (2003) Proceedings of the National Academy of Sciences, 100, pp. 13167-13172 
504 |a Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T., Cohen, K.L., Robust Principal Components for Functional Data (1999) Test, 8, pp. 1-28 
504 |a Maronna, R.A., Principal Components and Orthogonal Regression Based on Robust Scales (2005) Technometrics, 47, pp. 264-273 
504 |a Maronna, R. A., and Yohai, V. J. (2007), Robust Lower-Rank Approximation of Data Matrices With Elementwise Contamination, unpublished manuscript, available at http://mate.dm.uba.ar/̃vyohai/LowRankFull. pdf; Maronna, R.A., Zamar, R.H., Robust Estimation of Location and Dispersion for High-Dimensional Data Sets (2002) Technometrics, 44, pp. 307-317 
504 |a Maronna, R.A., Martin, R.D., Yohai, V.J., (2006) Robust Statistics: Theory and Methods, , New York: Wiley 
504 |a Naga, R., Antille, G., Stability of Robust and Non-Robust Principal Component Analysis (1990) Computational Statistics & Data Analysis, 10, pp. 169-174 
504 |a Rey, W. (2007), Total Singular Value Decomposition: Robust SVD, Regression and Location-Scale, unpublished manuscript, available at http://arxiv.org/abs/0706.0096; Serneels, S., Verdonck, T., Principal Component Analysis for Data Containing Outliers and Missing Elements (2008) Computational Statistics and Data Analysis, 52, pp. 1712-1727 
504 |a Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B., Classification of Radar Returns From the Ionosphere Using Neural Networks (1989) Johns Hopkins APL Technical Digest, 10, pp. 262-266 
504 |a Verboon, P., Heiser, W.J., Resistant Lower-Rank Approximation of Matrices by Iterative Majorization (1994) Computational Statistics and Data Analysis, 18, pp. 457-467 
504 |a Yohai, V.J., High-Breakdown Point and High-Efficiency Estimates for Regression (1987) The Annals of Statistics, 15, pp. 642-656 
504 |a Yohai, V.J., Zamar, R.H., High-Breakdown Estimates of Regression by Means of the Minimization of an Efficient Scale (1988) Journal of the American Statistical Association, 83, pp. 406-413 
520 3 |a We propose a robust method to approximate an n × p data matrix with one of rank q. The method is based on Yohai's regression MM estimates. It is intended to be resistant against the existence of both atypical rows and of scattered atypical cells and also to be able to cope with missing values. We propose an algorithm based on alternating M-regressions and a starting estimate based on successive rank-one fits, which involves O(npq) operations. Simulations show that our estimate outperforms competing estimates in terms of both efficiency and resistance. Three high-dimensional real data sets are analyzed. The running time of our estimate for large data sets is shown to be less than that of its competitors. © 2008 American Statistical Association and the American Society for Quality.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica, PAV 120, PICT 21407 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 5505 
536 |a Detalles de la financiación: This research was supported in part by CONICET (grant PIP 5505), ANPCyT, Argentina (grants PICT 21407 and PAV 120). 
593 |a Faculty of Exact Sciences, University of La Plata, CC 172, La Plata 1900, Argentina 
593 |a CICPBA 
593 |a Faculty of Exact Sciences, University of Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina 
593 |a CONICET 
690 1 0 |a ALTERNATING REGRESSIONS 
690 1 0 |a MM ESTIMATE 
690 1 0 |a MULTIVARIATE OUTLIERS 
690 1 0 |a PRINCIPAL COMPONENTS 
690 1 0 |a RAR ESTIMATE. 
690 1 0 |a COMPETITION 
690 1 0 |a KETONES 
690 1 0 |a METHOD OF MOMENTS 
690 1 0 |a ALTERNATING REGRESSIONS 
690 1 0 |a MM ESTIMATE 
690 1 0 |a MULTIVARIATE OUTLIERS 
690 1 0 |a PRINCIPAL COMPONENTS 
690 1 0 |a RAR ESTIMATE. 
690 1 0 |a REGRESSION ANALYSIS 
700 1 |a Yohai, V. 
773 0 |d 2008  |g v. 50  |h pp. 295-304  |k n. 3  |p Technometrics  |x 00401706  |t Technometrics 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-55149098958&doi=10.1198%2f004017008000000190&partnerID=40&md5=42c00ccbbab54939bb55e7ac301ac236  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1198/004017008000000190  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00401706_v50_n3_p295_Maronna  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00401706_v50_n3_p295_Maronna  |y Registro en la Biblioteca Digital 
961 |a paper_00401706_v50_n3_p295_Maronna  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83300