Gated electron transfer of Yeast Iso-1 cytochrome c on self-assembled monolayer-coated electrodes

Iso-1 yeast cytochrome c (YCC) was adsorbed on Ag electrodes coated with self-assembled monolayers (SAMs) consisting either of 11-mercaptoundecanoic acid (MUA) or of 1:1 mixtures of MUA and either 11-mercaptoundecanol (MU) or 7-mercaptoheptanol (MH). The redox potentials and the apparent rate consta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Feng, J.-J
Otros Autores: Murgida, D.H, Kuhlmann, U., Utesch, T., Mroginski, María Andrea, Hildebrandt, P., Weidinger, I.M
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: American Chemical Society 2008
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 13482caa a22017177a 4500
001 PAPER-22274
003 AR-BaUEN
005 20250805122212.0
008 190411s2008 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-57449099053 
030 |a JPCBF 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Feng, J.-J. 
245 1 0 |a Gated electron transfer of Yeast Iso-1 cytochrome c on self-assembled monolayer-coated electrodes 
260 |b American Chemical Society  |c 2008 
270 1 0 |m Weidinger, I. M.; Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany; email: i.weidinger@mailbox.tu-berlin.de 
504 |a Willner, I., Katz, E., (2005) Bioelectronics, , Wiley-VCH: Weinheim 
504 |a Willner, I., Katz, E., (2000) Angew. Chem., Int. Ed, 39, pp. 1180-1218 
504 |a Rusmini, F., Zhong, Z.Y., Feijen, J., (2007) Biomacromolecules, 8, pp. 1775-1789 
504 |a Armstrong, F.A., Wilson, G.S., (2000) Electrochim. Acta, 45, pp. 2623-2645 
504 |a Flink, S., van Veggel, F.C.J.M., Reinhoudt, D.N., (2000) Adv. Mater, 12, pp. 1315-1328 
504 |a Katz, E., Willner, I., Wang, J., (2004) Electroanal, 16, pp. 19-44 
504 |a Chen, D., Wang, G., Li, J.H., (2007) J. Phys. Chem. C, 111, pp. 2351-2367 
504 |a Zhang, J., Chi, Q., Kuznetsov, A.M., Hansen, A.G., Wackerbarth, H., Christensen, H.E.M., Andersen, J.E.T., Ulstrup, J., (2002) J. Phys. Chem. B, 106, pp. 1131-1152 
504 |a Armstrong, F.A., Hill, H.A.O., Walton, N.J., (1985) Q. Rev. Biophys, 18, pp. 261-322 
504 |a Nahir, T.M., Clark, R.A., Bowden, E.F., (1994) Anal. Chem, 66, pp. 2595-2598 
504 |a El Kasmi, A., Wallace, J.M., Bowden, E.F., Binet, S.M., Linderman, R., (1998) J. J. Am. Chem. Soc, 120, pp. 225-226 
504 |a Armstrong, F.A., Camba, R., Heering, H.A., Hirst, J., Jeuken, L.J.C., Jones, A.K., Leger, C., Mcevoy, J.P., (2000) Faraday Discuss, pp. 191-203 
504 |a Murgida, D.H., Hildebrandt, P., (2005) Phys. Chem. Chem. Phys, 7, pp. 3773-3784 
504 |a Udit, A.K., Hill, M.G., Gray, H.B., (2006) Langmuir, 22, pp. 10854-10857 
504 |a Wang, J., (2008) Chem. Rev, 108, pp. 814-825 
504 |a Bortolotti, C.A., Battistuzzi, G., Borsari, M., Facci, P., Ranieri, A., Sola, M., (2006) J. Am. Chem. Soc, 128, pp. 5444-5451 
504 |a Bortolotti, C., Borsari, M., Sola, M., Chertkova, R., Dolgikh, D., Kotlyar, A., Facci, P., (2007) J. Phys. Chem. C, 111, pp. 12100-12105 
504 |a Heering, H.A., Wiertz, F.G.M., Dekker, C., de Vries, S., (2004) J. Am. Chem. Soc, 126, pp. 11103-11112 
504 |a Murgida, D.H., Hildebrandt, P., (2004) Acc. Chem. Res, 37, pp. 854-861 
504 |a Murgida, D., Hildebrandt, P., (2006) Surf. Enhanced Raman Seattering, 103, pp. 313-334 
504 |a Jeuken, L.J.C., Mcevoy, J.P., Armstrong, F.A., (2002) J. Phys. Chem. B, 106, pp. 2304-2313 
504 |a Jeuken, L.J.C., (2003) BBA Bioenergetics, 1604, pp. 67-76 
504 |a Tarlov, M.J., Bowden, E.F., (1991) J Am. Chem. Soc, 113, pp. 1847-1849 
504 |a Murgida, D.H., Hildebrandt, P., (2008) Chem. Soc. Rev, 37, pp. 937-945 
504 |a Avila, A., Gregory, B.W., Niki, K., Cotton, T.M., (2000) J. Phys. Chem. B, 104, pp. 2759-2766 
504 |a Chi, Q.J., Zhang, J.D., Andersen, J.E.T., Ulstrup, J., (2001) J. Phys. Chem. B, 105, pp. 4669-4679 
504 |a Leopold, M.C., Bowden, E.F., (2002) Langmuir, 18, pp. 2239-2245 
504 |a Xu, J.S., Bowden, E.F., (2006) J. Am. Chem. Soc, 128, pp. 6813-6822 
504 |a Wei, J.J., Liu, H.Y., Khoshtariya, D.E., Yamamoto, H., Dick, A., Waldeck, D.H., (2002) Angew. Chem., Int. Ed, 41, pp. 4700-4703 
504 |a Yue, H.J., Khoshtariya, D., Waldeck, D.H., Gmchol, J., Hildebrandt, P., Murgida, D.H., (2006) J. Phys. Chem. B, 110, pp. 19906-19913 
504 |a de Groot, M.T., Merkx, M., Köper, M.T.M., (2007) Langmuir, 23, pp. 3832-3839 
504 |a Siebert, F., Hildebrandt, P., (2008) Vibrational Spectroscopy in Life Science, , Wiley-VCH: Weinheim 
504 |a Millo, D., Bonifacio, A., Ranieri, A., Borsari, M., Gooijer, C., van der Zwan, G., (2007) Langmuir, 23, pp. 9898-9904 
504 |a Millo, D., Bonifacio, A., Ranieri, A., Borsari, M., Gooijer, C., van der Zwan, G., (2007) Langmuir, 23, pp. 4340-4345 
504 |a Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., (2008) J. Am. Chem. Soc, 130, pp. 9844-9848 
504 |a Millo, D., Ranieri, A., Koot, W., Gooijer, C., van der Zwan, G., (2006) Anal. Chem, 78, pp. 5622-5625 
504 |a Wackerbarth, H., Klar, U., Gunther, W., Hildebrandt, P., (1999) Appl. Spectrosc, 53, pp. 283-291 
504 |a Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., (2005) J. Comput. Chem, 26, pp. 1781-1802 
504 |a Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M., (1983) J. Comput. Chem, 4, pp. 187-217 
504 |a Foloppe, N., MacKerell, A.D., (2000) J. Comput. Chem, 21, pp. 86-104 
504 |a Autenrieth, F., Tajkhorshid, E., Baudry, J., Luthev-Schulten, J., (2004) J. Comput. Chem, 25, pp. 1613-1622 
504 |a Louie, G.V., Brayer, G.D., (1990) J. Mol. Biol, 214, pp. 527-555 
504 |a Berghuis, A.M., Brayer, G.D., (1992) J. Mol. Biol, 223, pp. 959-976 
504 |a Qi, P.X.R., Beckman, R.A., Wand, A., (1996) J. Biochemistry, 35, pp. 12275-12286 
504 |a Brunger, A.T., Karplus, M., (1988) Proteins, 4, pp. 148-156 
504 |a Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impev, R.W., Klein, M.L., (1983) J. Chem. Phys, 79, pp. 926-935 
504 |a van Gunsteren, W.F., Berendsen, H.J.C., (1977) Mol. Phys, 34, pp. 1311-1327 
504 |a Feller, S.E., Zhang, Y.H., Pastor, R.W., Brooks, B.R., (1995) J. Chem. Phys, 103, pp. 4613-4621 
504 |a Humphrey, W., Dalke, A., Schulten, K., (1996) J. Mol. Graphics, 14, p. 33 
504 |a Hu, S.Z., Morris, I.K., Singh, J.P., Smith, K.M., Spiro, T.G., (1993) J. Am. Chem. Soc, 115, pp. 12446-12458 
504 |a Dopner, S., Hildebrandt, P., Mauk, A.G., Lenk, H., Stempfle, W., (1996) Spectrochim. Acta, A 51, pp. 573-584 
504 |a Rafferty, S.P., Pearce, L.L., Barker, P.D., Guillemette, J.G., Kay, C.M., Smith, M., Mauk, A.G., (1990) Biochemistry, 29, pp. 9365-9369 
504 |a Davies, A.M., Guillemette, J.G., Smith, M., Greenwood, C., Thurgood, A.G.P., Mauk, A.G., Moore, G.R., (1993) Biochemistry, 32, pp. 5431-5435 
504 |a Ikeshoji, T., Taniguchi, I., Hawkridge, F.M., (1989) J. Electroanal. Chem, 270, pp. 297-308 
504 |a Kneipp, K., Moskovits, M., Kneipp, H., (2006) Surface-enhanced Raman Scattering, , Springer: Berlin 
504 |a Macdonald, I.D.G., Smith, W.E., (1996) Langmuir, 12, pp. 706-713 
504 |a Wackerbarth, H., Hildebrandt, P., (2003) ChemPhysChem, 4, pp. 714-724 
504 |a Murgida, D.H., Hildebrandt, P., (2001) J. Am. Chem. Soc, 123, pp. 4062-4068 
504 |a Lipkowski, J., Stolberg, L., Yang, D.F., Pettinger, B., Mirwald, S., Henglein, F., Kolb, D.M., (1994) Electrochim. Acta, 39, pp. 1045-1056 
504 |a Pajkossy, T., Kolb, D.M., (2001) Electrochim. Acta, 46, pp. 3063-3071 
504 |a Wackerbarth, H., Murgida, D.H., Oellerich, S., Dopner, S., Rivas, L., Hildebrandt, P., (2001) J. Mol. Struct, 563, pp. 51-59 
504 |a Ramirez, P., Andreu, R., Cuesta, A., Calzado, C.J., Calvente, J.J., (2007) Anal. Chem, 79, pp. 6473-6479 
504 |a Koppenol, W.H., Rush, J.D., Mills, J.D., Margoliash, E., (1991) Mol. Biol. Evol, 8, pp. 545-558 
504 |a Murgida, D.H., Hildebrandt, P., (2001) J. Phys. Chem. B, 105, pp. 1578-1586 
504 |a Smith, C.P., White, H.S., (1992) Anal. Chem, 64, pp. 2398-2405 
504 |a Wisitruangsakul, N., Zebger, I., Ly, H.K., Murgida, D.H., Ekgasit, S., Hildebrandt, P., (2008) Phys. Chem. Chem. Phys, 34, pp. 5276-5286 
504 |a Iwata, S., Ostermeier, C., Ludwig, B., Michel, H., (1995) Nature, 376, pp. 660-669 
504 |a Lange, C., Hunte, C., (2002) Proc. Natl. Acad. Sci. U.S.A, 99, pp. 2800-2805 
504 |a Pelletier, H., Kraut, J., (1992) Science, 258, pp. 1748-1755 
506 |2 openaire  |e Política editorial 
520 3 |a Iso-1 yeast cytochrome c (YCC) was adsorbed on Ag electrodes coated with self-assembled monolayers (SAMs) consisting either of 11-mercaptoundecanoic acid (MUA) or of 1:1 mixtures of MUA and either 11-mercaptoundecanol (MU) or 7-mercaptoheptanol (MH). The redox potentials and the apparent rate constants for the interfacial redox process as well as for the protein reorientation were determined by stationary surface-enhanced resonance Raman (SERR) and time-resolved SERR spectroscopy, respectively. For YCC immobilized on MUA and MUA/MU at pH 7.0 and 6.0, the negative shifts of the redox potentials with respect to that for the protein in solution can be rationalized in terms of the potential of the zero-charge determined by impedance measurements. The apparent electron transfer rate constants of YCC on MUA/MU and MU/MH at pH 6.0 were determined to be 8 and 18 s-1, respectively. A decrease of the relaxations constants by a factor of ca. 2 was found for pH 7.0, and a comparable low value was determined for a pure MUA even at pH 6.0. In each system, the rate constant for protein reorientation was found to be the same as that for the electron transfer, implying that protein reorientation is the rate limiting step for the interfacial redox process. This gating step is distinctly slower than that for horse heart cytochrome c (HHCC) observed previously under similar conditions (Murgida, D. H.; Hildebrandt, P. J. Am. Chem. Soc. 2001, 123, 4062-4068). The different rate constants of protein reorientation for both proteins and the variations of the rate constants for the different SAMs and pH are attributed to the electric field dependence of the free energy of activation which is assumed to be proportional to the product of the electric field strength and the molecular dipole moment of the protein. The latter quantity is determined by molecular dynamics simulations and electrostatic calculations to be more than 2 times larger for YCC than for HHCC. Moreover, the dipole moment vector and the heme plane constitute an angle of ca. 10 and 45° in YCC and HHCC, respectively. The different magnitudes and directions of the dipole moments as well as the different electric field strengths at the various SAM/protein interfaces allow for a qualitative description of the protein-, SAM-, and electrode-specific kinetics of the interfacial redox processes studied in this and previous works. © 2008 American Chemical Society.  |l eng 
593 |a Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica Fisica, INQUIMAE, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina 
690 1 0 |a ACTIVATION ENERGY 
690 1 0 |a COATED WIRE ELECTRODES 
690 1 0 |a DIPOLE MOMENT 
690 1 0 |a DYNAMICS 
690 1 0 |a ELECTRIC DIPOLE MOMENTS 
690 1 0 |a ELECTRIC FIELD EFFECTS 
690 1 0 |a ELECTRIC FIELDS 
690 1 0 |a ELECTRODES 
690 1 0 |a ELECTRON ENERGY LEVELS 
690 1 0 |a ELECTRON TRANSITIONS 
690 1 0 |a MISSILE BASES 
690 1 0 |a MOLECULAR DYNAMICS 
690 1 0 |a MONOLAYERS 
690 1 0 |a ORGANIC POLYMERS 
690 1 0 |a PORPHYRINS 
690 1 0 |a QUANTUM CHEMISTRY 
690 1 0 |a SELF ASSEMBLED MONOLAYERS 
690 1 0 |a SILVER 
690 1 0 |a YEAST 
690 1 0 |a AG ELECTRODES 
690 1 0 |a APPARENT RATE CONSTANTS 
690 1 0 |a COATED ELECTRODES 
690 1 0 |a CYTOCHROME C 
690 1 0 |a ELECTRIC FIELD STRENGTHS 
690 1 0 |a ELECTRON TRANSFER RATES 
690 1 0 |a ELECTRON TRANSFERS 
690 1 0 |a ELECTROSTATIC CALCULATIONS 
690 1 0 |a ENERGY OF ACTIVATIONS 
690 1 0 |a FIELD DEPENDENCES 
690 1 0 |a IMPEDANCE MEASUREMENTS 
690 1 0 |a LIMITING STEPS 
690 1 0 |a MERCAPTOUNDECANOIC ACIDS 
690 1 0 |a MOLECULAR DIPOLE MOMENTS 
690 1 0 |a MOLECULAR DYNAMICS SIMULATIONS 
690 1 0 |a NEGATIVE SHIFTS 
690 1 0 |a REDOX POTENTIALS 
690 1 0 |a REDOX PROCESSES 
690 1 0 |a RESONANCE RAMAN 
690 1 0 |a TIME-RESOLVED 
690 1 0 |a VARIATIONS OF 
690 1 0 |a YEAST CYTOCHROME C 
690 1 0 |a RATE CONSTANTS 
700 1 |a Murgida, D.H. 
700 1 |a Kuhlmann, U. 
700 1 |a Utesch, T. 
700 1 |a Mroginski, María Andrea 
700 1 |a Hildebrandt, P. 
700 1 |a Weidinger, I.M. 
773 0 |d American Chemical Society, 2008  |g v. 112  |h pp. 15202-15211  |k n. 47  |p J Phys Chem B  |x 15206106  |w (AR-BaUEN)CENRE-5879  |t Journal of Physical Chemistry B 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-57449099053&doi=10.1021%2fjp8062383&partnerID=40&md5=99d6cf923283882f1378f34844ec3996  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/jp8062383  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15206106_v112_n47_p15202_Feng  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15206106_v112_n47_p15202_Feng  |y Registro en la Biblioteca Digital 
961 |a paper_15206106_v112_n47_p15202_Feng  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 83227