Diffraction gratings of isotropic negative-phase velocity materials

Diffraction of electromagnetic plane waves by the gratings made by periodically corrugating the exposed planar boundaries of homogeneous, isotropic, linear dielectric-magnetic half-spaces is examined. The phase velocity vector in the diffracting material can be either co-parallel or anti-parallel to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Depine, Ricardo Angel
Otros Autores: Lakhtakia, A.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11643caa a22011777a 4500
001 PAPER-22148
003 AR-BaUEN
005 20250221084017.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-13944278512 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Depine, Ricardo Angel 
245 1 0 |a Diffraction gratings of isotropic negative-phase velocity materials 
260 |c 2005 
270 1 0 |m Depine, R.A.; Grupo De Electromagnetismo Aplicado, Departamento De Física, Fac. De Cie. Exact. Y Nat., Univ. D., Pabellón I, 1428 Buenos Aires, Argentina; email: rdep@df.uba.ar 
504 |a Parker, A.R., 515 Million years of structural colours (2000) J. Opt. A: Pure Appl. Opt., 2, pp. R15-R28 
504 |a Harrison, G.R., The production of diffraction gratings, I: Development of the ruling art (1949) J. Opt. Soc. Am., 39, pp. 413-426 
504 |a Maystre, D., (1992) Selected Papers on Diffraction Gratings, , SPIE Optical Engineering Press, Bellingham, WA, USA 
504 |a Shelby, R.A., Smith, D.R., Schultz, S., Experimental verification of a negative index of refraction (2001) Science, 292, pp. 77-79 
504 |a Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., Brief overview of recent developments on negative phase-velocity mediums alias left-handed materials (2002) Arch. Elektron. Übertrag., 56, pp. 407-410 
504 |a Pendry, J.B., Focus issue: Negative refraction and metamaterials (2003) Opt. Express, 11, pp. 639-760 
504 |a Kwan, A., Dudley, J., Lantz, E., Who really discovered Snell's law?. The law of refraction can be traced back to the 10th century Iraqi scientist Ibn Sahl, and the correct spelling of Snell's last name is Snel (2002) Phys. World, 15 (4), p. 64 
504 |a Lakhtakia, A., Varadan, V.V., Varadan, V.K., Scattering by periodic achiral-chiral interfaces (1989) J. Opt. Soc. Am. A, 6, pp. 1675-1681 
504 |a Lester, M., Depine, R.A., Reflection of electromagnetic waves at the corrugated boundary between permeable dielectrics (1994) J. Phys. D: Appl. Phys., 27, pp. 2451-2456 
504 |a Lakhtakia, A., On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability (2003) Electromagnetics, 23, pp. 71-75 
504 |a Depine, R.A., Lakhtakia, A., A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity (2004) Microwave Opt. Technol. Lett., 41, pp. 315-316. , http://arXiv.org/abs/physics/0311029 
504 |a Born, M., Wolf, E., (1980) Principles of Optics, , sixth ed. Pergamon Press Oxford, United Kingdom 
504 |a Waterman, P.C., Scattering by periodic surfaces (1975) J. Acoust. Soc. Am., 57, pp. 791-802 
504 |a Bohren, C.F., Huffman, D.R., (1983) Absorption and Scattering of Light by Small Particles, , Wiley New York, NY, USA 
504 |a Hu, B.Y.-K., Kramers-Kronig in two lines (1989) Am. J. Phys., 57, p. 821 
504 |a Van Den Berg, P.M., Reflection by a grating: Rayleigh methods (1981) J. Opt. Soc. Am., 71, pp. 1224-1229 
504 |a Rayleigh, L., On the dynamical theory of gratings (1907) Proc. R. Soc. London A, 79, pp. 399-416 
504 |a Chuang, S.-L., Kong, J.A., Scattering from periodic surfaces (1981) Proc. IEEE, 69, pp. 1132-1144 
504 |a Chandezon, J., Maystre, D., Raoult, G., A new theoretical method for diffraction gratings and its numerical application (1980) J. Opt. (Paris), 11, pp. 235-241 
504 |a Li, L., Chandezon, J., Granet, G., Plumey, J., Rigorous and efficient grating-analysis method made easy for optical engineers (1999) Appl. Opt., 38, pp. 304-313 
504 |a Maradudin, A., Interaction of surface polaritons and plasmons with surface roughness (1982) Surface Polaritons, , V. Agranovich D.L. Mills North-Holland Amsterdam, The Netherlands 
504 |a Lester, M., Depine, R.A., Scattering of electromagnetic waves at the corrugated interface between index-matched media (1996) Opt. Commun., 132, pp. 135-143 
504 |a Strang, G., (1986) Introduction to Applied Mathematics, , Wellesley Cambridge Press Wellesley, MA, USA 
504 |a Millar, R.F., On the Rayleigh assumption in scattering by a periodic surface: II (1971) Proc. Cambridge Philos. Soc., 69, pp. 217-225 
504 |a Hill, N.R., Celli, V., Limits of convergence of the Rayleigh method for surface scattering (1978) Phys. Rev. B, 17, pp. 2478-2481 
504 |a Depine, R.A., Gigli, M.L., Diffraction from corrugated gratings made with uniaxial crystals: Rayleigh methods (1994) J. Mod. Opt., 41, pp. 695-715 
504 |a Lopez, C., Yndurain, F., García, N., Iterative series for calculating the scattering of waves from a hard corrugated surface (1978) Phys. Rev. B, 18, pp. 970-972 
504 |a Li, L., Chandezon, J., Improvement of the coordinate transformation method for surface-relief gratings with sharp edges (1996) J. Opt. Soc. Am. A, 13, pp. 2247-2255 
504 |a Chandezon, J., Dupuis, M., Cornet, G., Maystre, D., Multicoated gratings: A differential formalism applicable in the entire optical region (1982) J. Opt. Soc. Am., 72, pp. 839-846 
504 |a Li, L., On the matrix truncation in the modal methods of diffraction gratings (1998) 19th Topical Meeting of the European Optical Society, , paper presented at Electromagnetic Optics Hyères, France, 7-9 September 
504 |a Popov, E., Mashev, L., Conical diffraction mounting generalization of a rigorous differential method (1986) J. Opt. (Paris), 17, pp. 175-180 
504 |a Popov, E., Neviére, M., Surface-enhanced second harmonics generation in nonlinear corrugated dielectrics: New theoretical approaches (1994) J. Opt. Soc. Am. B, 11, pp. 1555-1564 
504 |a Harris, J.B., Preist, T.W., Sambles, J.R., Differential formalism for multilayer diffraction gratings made with uniaxial materials (1995) J. Opt. Soc. Am. A, 12, pp. 1965-1973 
504 |a Inchaussandague, M.E., Depine, R.A., Polarization conversion from diffraction gratings made of uniaxial cyrstals (1996) Phys. Rev. E, 54, pp. 2899-2911 
504 |a Inchaussandague, M.E., Depine, R.A., Rigorous vector theory for diffraction gratings made of biaxial crystals (1997) J. Mod. Opt., 44, pp. 1-10 
504 |a Granet, G., Chandezon, J., Coudert, O., Extension of the C method to nonhomogeneous media: Application to nonhomogeneous layers with parallel modulated faces and to inclined lamellar gratings (1997) J. Opt. Soc. Am. A, 14, pp. 1576-1582 
504 |a Granet, G., Analysis of diffraction by crossed gratings using a non-orthogonal coordinate system (1995) Pure Appl. Opt., 4, pp. 777-793 
504 |a Lakhtakia, A., Conjugation symmetry in linear electromagnetism in extension of materials with negative real permittivity and permeability scalars (2004) Microwave Opt. Technol. Lett., 40, pp. 160-161 
504 |a Ruppin, R., Surface polaritons of a left-handed medium (2000) Phys. Lett. A, 277, pp. 61-64 
504 |a Shadrivov, I., Sukhorukov, A., Kivshar, Y., Zharov, A., Boardman, A., Egan, P., Nonlinear surface waves in left-handed materials (2004) Phys. Rev. E, 69, pp. 9-0166171 
504 |a Boardman, A.D., (1982) Electromagnetic Surface Modes, , Wiley, New York, NY, USA 
504 |a Raether, H., (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings, , Springer Heidelberg, Germany 
506 |2 openaire  |e Política editorial 
520 3 |a Diffraction of electromagnetic plane waves by the gratings made by periodically corrugating the exposed planar boundaries of homogeneous, isotropic, linear dielectric-magnetic half-spaces is examined. The phase velocity vector in the diffracting material can be either co-parallel or anti-parallel to the time-averaged Poynting vector, thereby allowing for the material to be classified as of either the positive- or the negative-phase velocity (PPV or NPV) type. Three methods used for analyzing dielectric gratings - the Rayleigh-hypothesis method, a perturbative approach, and the C formalism - are extended here to encompass NPV gratings by a careful consideration of field representation inside the refracting half-space. Corrugations of both symmetric as well as asymmetric shapes are studied, as also the diversity of grating response to the linear polarization states of the incident plane wave. The replacement of PPV grating by its NPV analog affects only nonspecular diffraction efficiencies when the corrugations are shallow, and the effect on specular diffraction efficiencies intensifies as the corrugations deepen. Whether the type of the refracting material is NPV or PPV is shown to affect surface wave propagation as well as resonant excitation of surface waves. © 2005 Elsevier GmbH. All rights reserved.  |l eng 
536 |a Detalles de la financiación: Materials Research Science and Engineering Center, Harvard University 
536 |a Detalles de la financiación: 802/OC-AR03-04457 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Universidad de Buenos Aires 
536 |a Detalles de la financiación: Consejo Nacional de Investigaciones Científicas y Técnicas 
536 |a Detalles de la financiación: R.A.D. acknowledges financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT-BID 802/OC-AR03-04457) and Universidad de Buenos Aires (UBA). A.L. acknowledges partial support from the Penn State Materials Research Science and Engineering Center. 
593 |a Grupo De Electromagnetismo Aplicado, Departamento De Física, Fac. De Cie. Exact. Y Nat., Univ. D., Pabellón I, 1428 Buenos Aires, Argentina 
593 |a Compl. and Theor. Mat. Sci. Group, Dept. of Eng. Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, United States 
690 1 0 |a GRATING 
690 1 0 |a NEGATIVE-PHASE VELOCITY 
690 1 0 |a NONSPECULAR DIFFRACTION 
690 1 0 |a NUMERICAL TECHNIQUES 
690 1 0 |a SURFACE WAVES 
690 1 0 |a BOUNDARY VALUE PROBLEMS 
690 1 0 |a DIELECTRIC DEVICES 
690 1 0 |a ELECTROMAGNETISM 
690 1 0 |a IMAGE ANALYSIS 
690 1 0 |a LENSES 
690 1 0 |a LIGHT POLARIZATION 
690 1 0 |a LIGHT REFLECTION 
690 1 0 |a LIGHT REFRACTION 
690 1 0 |a MAGNETIC MATERIALS 
690 1 0 |a MAXWELL EQUATIONS 
690 1 0 |a OPTICS 
690 1 0 |a PERTURBATION TECHNIQUES 
690 1 0 |a SURFACE WAVES 
690 1 0 |a VECTORS 
690 1 0 |a HELMHOLTZ EQUATIONS 
690 1 0 |a II 
690 1 0 |a NEGATIVE-PHASE VELOCITY MATERIALS 
690 1 0 |a NONSPECULAR DIFFRACTION 
690 1 0 |a NUMERICAL TECHNIQUES 
690 1 0 |a DIFFRACTION GRATINGS 
700 1 |a Lakhtakia, A. 
773 0 |d 2005  |g v. 116  |h pp. 31-43  |k n. 1  |p Optik  |x 00304026  |w (AR-BaUEN)CENRE-2208  |t Optik 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-13944278512&doi=10.1016%2fj.ijleo.2004.11.004&partnerID=40&md5=9c7a2c04c2a19efcc885cfea38fdb916  |x registro  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1016/j.ijleo.2004.11.004  |x doi  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00304026_v116_n1_p31_Depine  |x handle  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304026_v116_n1_p31_Depine  |x registro  |y Registro en la Biblioteca Digital 
961 |a paper_00304026_v116_n1_p31_Depine  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI