Optimal reinsurance and dividend distribution policies in the cramér-lundberg model

We consider that the reserve of an insurance company follows a Cramér-Lundberg process. The management has the possibility of controlling the risk by means of reinsurance. Our aim is to find a dynamic choice of both the reinsurance policy and the dividend distribution strategy that maximizes the cum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Azcue, P.
Otros Autores: Muler, N.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2005
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06653caa a22006857a 4500
001 PAPER-22138
003 AR-BaUEN
005 20230518205340.0
008 190411s2005 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-17444414628 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Azcue, P. 
245 1 0 |a Optimal reinsurance and dividend distribution policies in the cramér-lundberg model 
260 |c 2005 
270 1 0 |m Azcue, P.; Depto. de Matematicas y Estadistica, Universidad Torcuato Di Tella, Minones 2159/77, (1428) Buenos Aires, Argentina; email: pazcue@utdt.edu 
506 |2 openaire  |e Política editorial 
504 |a Asmussen, S., Højgaard, B., Taksar, M., Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation (2000) Finance Stochast., 4 (3), pp. 299-324 
504 |a Asmussen, S., Taksar, M., Controlled diffusion models for optimal dividend pay-out (1997) Insurance: Math. & Econ., 20, pp. 1-15 
504 |a Bardi, M., Capuzzo-Dolcetta, I., (1997) Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, , Boston: Birkhäuser 
504 |a Benth, F.E., Karlsen, K.H., Reikvam, K., Optimal portfolio selection with consumption and nonlinear integra-differential equations with gradient constraint: A viscosity solution approach (2001) Finance Stoch., 5 (3), pp. 275-303 
504 |a Bühlmann, H., (1970) Mathematical Methods in Risk Theory, , Berlin: Springer-Verlag 
504 |a Capuzzo-Dolcetta, I., Lions, P.L., Hamilton-Jacobi equations with state constraints (1990) Trans. Am. Math. Soc., 318 (2), pp. 643-683 
504 |a Choulli, T., Taksar, M., Zhou, X.Y., Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction (2001) Quant. Finance, 1, pp. 573-596 
504 |a Crandall, M.G., Evans, L.C., Lions, P.L., Some properties of viscosity solutions of Hamilton-Jacobi equations (1984) Trans. Am. Math. Soc., 282, pp. 487-502 
504 |a Crandall, M.G., Lions, P.L., Viscosity solution of Hamilton-Jacobi equations (1983) Trans. Am. Math. Soc., 277 (1), pp. 1-42 
504 |a Fleming, W.H., Soner, H.M., (1993) Controlled Markov Processes and Viscosity Solutions, , New York: Springer-Verlag 
504 |a Gerber, H., Entscheidungskriterien für den zusammengesetzten Poisson-Prozeß (1969) Mitt. Ver. Schweiz. Vers. Math., 69, pp. 185-228 
504 |a Højgaard, B., Optimal dynamic premium control in non-life insurance. Maximizing dividend pay-outs (2002) Scand. Actuarial J., 4, pp. 225-245 
504 |a Højgaard, B., Taksar, M., Controlling risk exposure and dividends payout schemes: Insurance company example (1999) Math. Finance, 9 (2), pp. 153-182 
504 |a Lions, P.L., Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. II. Viscosity solutions and uniqueness (1983) Comm. Partial Diff. Eqs., 8 (11), pp. 1229-1276 
504 |a Mnif, M., Sulem, A., Optimal risk control under excess of loss reinsurance (2001) Raport de Recherche No. 4317, 4317. , INRIA Rocquencourt 
504 |a Protter, P., (1992) Stochastic Integration and Differential Equations, , Berlin: Springer-Verlag 
504 |a Sayah, A., Équations d'Hamilton-Jacobi du premier ordre avec termes intégro différentiels. I. Unicité des solutions de viscosité (1991) Comm. Partial Diff. Eqs., 16 (6-7), pp. 1057-1074 
504 |a Sayah, A., Équations d'Hamilton-Jacobi du premier ordre avec termes intégro différentiels. II. Existence des solutions de viscosité (1991) Comm. Partial Diff. Eqs., 16 (6-7), pp. 1075-1093 
504 |a Schmidli, H., Optimal proportional reinsurance policies in a dynamic setting (2001) Scand. Actuarial J., 1, pp. 55-68 
504 |a Soner, H.M., Optimal control with state-space constraint. I (1986) SIAM J. Control Optim., 24 (3), pp. 552-561 
504 |a Soner, H.M., Optimal control with state-space constraint. II (1986) SIAM J. Control Optim., 24 (6), pp. 1110-1122 
504 |a Soner, H.M., Optimal control of Jump-Markov processes and viscosity solutions (1988) IM a Volumes in Mathematics and Its Applications, 10, pp. 501-511. , Stochastic Differential Systems, Stochastic Control Theory and Applications (Minneapolis, Minn., 1986), New York: Springer 
504 |a Wheeden, R.L., Zygmund, A., (1977) Measure and Integral, , New York: Marcel Dekker 
504 |a Zhu, H., (1991) Dynamic Programming and Variational Inequalities in Singular Stochastic Control, , Doctoral dissertation, Brown University 
520 3 |a We consider that the reserve of an insurance company follows a Cramér-Lundberg process. The management has the possibility of controlling the risk by means of reinsurance. Our aim is to find a dynamic choice of both the reinsurance policy and the dividend distribution strategy that maximizes the cumulative expected discounted dividend payouts. We study the usual cases of excess-of-loss and proportional reinsurance as well as the family of all possible reinsurance contracts. We characterize the optimal value function as the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation and we prove that there exists an optimal band strategy. We also describe the optimal value function for small initial reserves. © 2005 Blackwell Publishing Inc.  |l eng 
593 |a Universidad Torcuato Di Tella, Argentina 
593 |a Depto. de Matematicas y Estadistica, Universidad Torcuato Di Tella, Minones 2159/77, (1428) Buenos Aires, Argentina 
690 1 0 |a CRAMER-LUNDBERG PROCESS 
690 1 0 |a DIVIDEND PAYOUTS 
690 1 0 |a DYNAMIC PROGRAMMING PRINCIPLE 
690 1 0 |a HAMILTON-JACOBI-BELLMAN EQUATION 
690 1 0 |a INSURANCE 
690 1 0 |a REINSURANCE 
690 1 0 |a RISK CONTROL 
690 1 0 |a VISCOSITY SOLUTION 
700 1 |a Muler, N. 
773 0 |d 2005  |g v. 15  |h pp. 261-308  |k n. 2  |p Math. Financ.  |x 09601627  |t Mathematical Finance 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-17444414628&doi=10.1111%2fj.0960-1627.2005.00220.x&partnerID=40&md5=4c98e5a9f40c460e352b92cc7a7e2ab5  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.0960-1627.2005.00220.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_09601627_v15_n2_p261_Azcue  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09601627_v15_n2_p261_Azcue  |y Registro en la Biblioteca Digital 
961 |a paper_09601627_v15_n2_p261_Azcue  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 83091