Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: Reversion by antidepressant treatment

Cerebral dysfunctions, including a high incidence of depression, are common findings in human type 1 diabetes mellitus. An association between depression and defective hippocampal neurogenesis has been proposed and, in rodents, antidepressant therapy restores neuronal proliferation in the dentate gy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Beauquis, J.
Otros Autores: Roig, P., Homo-Delarche, F., De Nicola, A., Saravia, F.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 19735caa a22019217a 4500
001 PAPER-21859
003 AR-BaUEN
005 20230518205321.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33645105249 
024 7 |2 cas  |a beta tubulin, 87090-36-6; broxuridine, 59-14-3; fluoxetine, 54910-89-3, 56296-78-7, 59333-67-4; Antidepressive Agents, Second-Generation; Bromodeoxyuridine, 59-14-3; Fluoxetine, 54910-89-3 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a EJONE 
100 1 |a Beauquis, J. 
245 1 0 |a Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: Reversion by antidepressant treatment 
260 |c 2006 
270 1 0 |m Saravia, F.; Laboratory of Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine, National Research Council Argentina, Obligado 2490 1428 Buenos Aires, Argentina; email: fsaravia@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Anderson, R., Freedland, K., Clouse, R., Lustman, P., The prevalence of comorbid depression in adults with diabetes. a meta-analysis (2001) Diabetes Care, 24, pp. 1069-1078 
504 |a Azmitia, E., Gannon, P.J., Kheck, N.M., Whitaker-Azmitia, P.M., Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells (1996) Neuropsychopharmacology, 14, pp. 35-46 
504 |a Barber, M., Kasturi, B., Austin, M., Patel, K., Mohankumar, S., Mohankumar, P., Diabetes-induced neuroendocrine changes in rats: Role of brain monoamines, insulin and leptin (2003) Brain Res, 964, pp. 128-135 
504 |a Biessels, G.J., Kappelle, A., Bravenboer, B., Gispen, W.H., Cerebral function in diabetes mellitus (1994) Diabetologia, 37, pp. 643-650 
504 |a Bluthe, R., Jafarian-Tehrani, M., Michaud, B., Haour, F., Dantzer, R., Homo-Delarche, F., Increased sensitivity of prediabetic nonobese diabetic mouse to the behavioral effects of IL-1 (1999) Brain, BehavImmun, 13, pp. 303-314 
504 |a Cameron, A., Gould, E., Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus (1994) Neuroscience, 61, pp. 203-209 
504 |a Cameron, H., McKay, R., Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus (2001) JCompNeurol, 435, pp. 406-417 
504 |a Cameron, A., Woolley, C., McEwen, B., Gould, E., Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat (1993) Neuroscience, 56, pp. 337-344 
504 |a Cameron, A., Hazel, T., McKay, R., Regulation of neurogenesis by growth factors and neurotransmitters (1998) JNeurobiol, 36, pp. 287-306 
504 |a Chabot, C., Massicote, M., Milot, F., Trudeau, J., Gagne, J., Impaired modulation of AMPA receptors by calcium-dependent processes in streptozotocin-induced diabetic rats (1997) Brain Res, 768, pp. 249-256 
504 |a Chen, C., Yang, J., Effects of short and long-lasting diabetes mellitus on mouse brain monoamines (1991) Brain Res, 552, pp. 175-179 
504 |a Coggeshall, R., Lekan, H., Methods for determining numbers of cells and synapses: A case for more uniform standards of review (1996) JCompNeurol, 364, pp. 6-15 
504 |a Czeh, B., Michaelis, T., Watanabe, T., Frahm, J., De Biurrun, G., Van Kampen, M., Bartolomucci, A., Fuchs, E., Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine (2001) ProcNatl AcadSciUSA, 98, pp. 12796-12801. , .q8 
504 |a Duman, R., Malberg, J., Nakagawa, S., Sa, C.D.'., Neuronal plasticity and survival in mood disorders (2000) BiolPsychiat, 48, pp. 732-739. , q9 
504 |a Duman, R., Malberg, J., Nakagawa, S., Regulation of adult neurogenesis by psychotropic drugs and stress (2001) JPharmacolExpTherap, 299, pp. 401-407 
504 |a Flood, J., Mooradian, A., Morley, J., Characteristics of learning and memory in streptozotocin-induced diabetic mice (1990) Diabetes, 39, pp. 1391-1398 
504 |a Gage, F., Neurogenesis in the adult brain (2002) JNeurosci, 22, pp. 612-613 
504 |a Gardoni, F., Kamal, A., Bellone, C., Biessels, G.J., Ramakers, G., Cattabeni, F., Gispen, W.H., Di Luca, M., Effects of streptozotocin-diabetes on the hippocampal NMDA receptor complex in rats (2002) JNeurochem, 80, pp. 438-447 
504 |a Gispen, W.H., Biessels, G.J., Cognition and synaptic plasticity in diabetes mellitus (2000) Trends Neurosci, 23, pp. 542-549 
504 |a Gould, E., McEwen, B., Tanapat, P., Galea, E., Fuchs, E., Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation (1997) JNeurosci, 17, pp. 2492-2498 
504 |a Gould, E., Tanapat, P., Rydel, T., Hastings, N., Regulation of hippocampal neurogenesis in adulthood (2000) BiolPsychiat, 48, pp. 715-720 
504 |a Helgason, C., Blood glucose and stroke (1998) Stroke, 19, pp. 1049-1053 
504 |a Holsboer, F., The corticosteroid receptor hypothesis of depression (2000) Neuropsychopharmacology, 23, pp. 477-501 
504 |a Howart, C., Reed, M., (1998) Unbiased StereologyThree-Dimensional Measurement in Microscopy, , .q10 Bios Scientific Publ. Oxford 
504 |a Jackson-Guilford, J., Leander, J., Nisenbaum, L., The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus (2000) NeurosciLett, 293, pp. 91-94 
504 |a Jacobs, B., Adult brain neurogenesis and depression (2002) Brain BehavImmun, 16, pp. 602-609 
504 |a Kamal, A., Biessels, G.J., Urban, I., Gispen, W.H., Hippocampal synaptic plasticity in streptozotocin-diabetic rats: Interaction of diabetes and ageing (1999) Neuroscience, 90, pp. 737-745 
504 |a Karten, Y., Olariu, A., Cameron, H., Stress in early life inhibits neurogenesis in adulthood (2005) Trends Neurosci, 28, pp. 171-172 
504 |a Katon, W., Von Korff, M., Ciechanowski, P., Russo, J., Lin, E., Simon, G., Ludman, E., Young, B., Behavioral and clinical factors associated with depression among individuals with diabetes (2004) Diabetes Care, 27, p. 914 
504 |a Kempermann, G., Regulation of adult hippocampal neurogenesis - Implications for novel theories of major depression (2002) BipolDisord, 4, pp. 17-33 
504 |a Kempermann, G., Kronenberg, G., Depressed new neurons - Adult neurogenesis and a cellular plasticity hypothesis of major depression (2003) BiolPsychiat, 54, pp. 499-503 
504 |a Kempermann, G., Kuhn, H., Gage, F., Genetic influence on neurogenesis in the dentate gyrus of adult mice (1997) ProcNatl AcadSciUSA, 94, p. 10. , 409-10 414 
504 |a Kempermann, G., Kuhn, H., Gage, F., More hippocampal neurons in adult mice living in an enriched environment (1997) Nature, 386, pp. 493-495 
504 |a Kempermann, G., Jessberger, S., Steiner, B., Kronenberg, G., Milestones of neuronal development in the adult hippocampus (2004) Trends Neurosci, 27, pp. 447-452 
504 |a Kendler, K., Karkowski, L., Prescott, C., Causal relationship betwen stressful life events and the onset of major depression (1999) AmJPsychiat, 156, pp. 837-841 
504 |a Kumar, V., Green, S., Stack, G., Berry, M., Jin, J., Chambon, P., Functional domains of the human estrogen receptor (2005) Cell, 51, pp. 941-951. , q11 
504 |a Lehmann, A., (1974) Atlas Stereotaxique du Cerveau de la Souris, , Editions du Centre National de la Recherche Scientifique Paris 
504 |a Li, Z., Zhang, W., Grunberger, G., Sima, A., Hippocampal neuronal apoptosis in type 1 diabetes (2002) Brain Res, 946, pp. 221-231 
504 |a Lustman, P., Griffith, L., Gavard, J., Clouse, R., Depression in adults with diabetes (1992) Diabetes Care, 15, pp. 1631-1639 
504 |a Lustman, P., Freedland, K., Griffith, L., Clouse, R., Fluoxetine for depression in diabetes: A randomized double-blind placebo-controlled trial (2000) Diabetes Care, 23, pp. 618-623 
504 |a Madsen, T., Treschow, A., Bengzon, J., Bolwig, T., Lindvall, O., Increased neurogenesis in a model of electroconvulsive therapy (2000) BiolPsychiat, 47, pp. 1043-1049 
504 |a Magariños, A., McEwen, B., Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress (2000) ProcNatl AcadSciUSA, 97, p. 11. , 056-11 061 
504 |a Malberg, J., Eisch, A., Nestler, E., Duman, R., Chronic antidepressant treatment increases neurogenesis in adult hippocampus (2000) JNeurosci, 20, pp. 9104-9110 
504 |a Malberg, J., Implications of adult hippocampal neurogenesis in antidepressant action (2004) RevPsychiatNeurosci, 29, pp. 196-205 
504 |a Mankovsky, B., Cerebrovascular disorders in patients with diabetes mellitus (1997) JDiabComplicat, 10, pp. 228-242 
504 |a McCall, A., The impact of diabetes on the CNS (1992) Diabetes, 41, pp. 557-570 
504 |a McEwen, B., Magariños, A., Reagan, L., Studies of hormone action in the hippocampal formation. Possible relevance to depression and diabetes (2002) JPsychosomRes, 53, pp. 883-890 
504 |a Miyata, S., Hirano, S., Kamei, J., Diabetes attenuates the antidepressant-like effect mediated by the activation of 5-1A receptor in the mouse tail suspension test (2004) Neuropsychopharmacology, 29, pp. 461-469 
504 |a Ott, A., Stolk, R., Van Harskamp, F., Pols, H., Hofman, A., Breteler, M., Diabetes mellitus and the risk of dementia: The Rotterdam study (1999) Neurology, 58, pp. 1937-1941 
504 |a Perez-Martin, M., Azcoitia, I., Trejo, J., Sierra, A., Garcia-Segura, L., An antagonist of estrogen receptors blocks the induction of adult neurogenesis (2003) EurJNeurosci, 18, pp. 923-930 
504 |a Perfilieva, E., Risedal, A., Nyberg, J., Johansson, B., Eriksson, P., Gender and strain influence on neurogenesis in dentate gyrus of young rats (2001) JCerebBlood Flow Metab, 21, pp. 211-217 
504 |a Posener, J., Wang, L., Price, J., Gado, M., Province, M., Miller, M., Babb, C., Csernansky, J., High-dimensional mapping of the hippocampus in depression (2003) AmJPsychiat, 160, pp. 83-89 
504 |a Van Praag, H., Kempermann, G., Gage, F., Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus (1999) NatNeurosci, 2, pp. 266-270 
504 |a Van Praag, H., Schinder, A., Christie, B., Toni, N., Palmer, T., Functional neurogenesis in the adult hippocampus (2002) Nature, 415, pp. 1030-1034 
504 |a Rakovac, L., Gfrerer, R.J., Habacher, W., Seereiner, S., Beck, P., Risse, A., Bauer, B., Pieber, T.R., Screening of depression in patients with diabetes mellitus (2004) Diabetologia, 47, pp. 1469-1470. , q13 
504 |a Revsin, Y., Saravia, F., Roig, P., Lima, A., De Kloet, E.R., Homo-Delarche, F., De Nicola, A.F., Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes (2005) Brain Res, 1038, pp. 22-31 
504 |a Ristow, M., Neurodegenerative disorders associated with diabetes mellitus (2004) JMolMed, 82, pp. 510-529 
504 |a Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Belzung, C.H.R., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants (2003) Science, 301, pp. 805-809 
504 |a Sapolsky, R., Is impaired neurogenesis relevant to the affective symptoms of depression? (2004) BiolPsychiat, 56, pp. 137-139 
504 |a Saravia, F., Durant, S., Hasnaoui, E.A., Dardenne, M., Homo-Delarche, F., Environmental and experimental procedures leading to variations in the incidence of diabetic in the nonobese diabetic (NOD) mouse (1996) Autoimmunity, 24, pp. 113-121 
504 |a Saravia, F., Gonzalez, S., Roig, P., Alves, V., Homo-Delarche, F., De Nicola, A.F., Diabetes increases the expression of hypothalamic neuropeptides in the spontaneous model of type 1 diabetes, the nonobese diabetic (NOD) mouse (2001) CellMolNeurobiol, 21, pp. 15-27 
504 |a Saravia, F., Revsin, Y., Gonzalez-Deniselle, M.S., Roig, P., Lima, A., Homo-Delarche, F., De Nicola, A.F., Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: The nonobese diabetic (NOD) and streptozotocin-treated mice (2002) Brain Res, 957, pp. 345-353 
504 |a Saravia, F., Revsin, Y., Lux-Lantos, V., Beauquis, J., Homo-Delarche, F., De Nicola, A.F., Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice (2004) JNeuroendocrinol, 16, pp. 704-710 
504 |a Seckl, J., Fink, G., Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in the rat hippocampus in vivo (1992) Neuroendocrinology, 55, pp. 621-626 
504 |a Serra, M., Pisu, M., Muggironi, M., Parodo, V., Papi, G., Sari, R., Dazzi, L., Biggio, G., Opposite effects of short-versus long-term administration of fluoxetine on the concentrations of nuroactive steroids in rat plasma and brain (2001) Psychopharmacology, 158, pp. 48-54 
504 |a Sheline, Y., Sanghavi, M., Mintun, M., Gado, M., MRI studies of neuroanatomic changes in unipolar major depression (2000) BiolPsychiat, 48, pp. 791-800 
504 |a Shors, T., Townsend, D.A., Zhao, M., Kozorovitskiy, Y., Gould, E., Neurogenesis may relate to some but not all types of hippocampal- dependent learning (2002) Hippocampus, 12, pp. 578-584. , q14 
504 |a Sima, A., Diabetes underlies common neurological disorders (2004) AnnNeurol, 56, pp. 459-461 
504 |a Stewart, R., Liolitsa, D., Type 2 diabetes mellitus, cognitive impairment and dementia (1999) DiabetMed, 16, pp. 93-112 
504 |a Tornello, S., Coirini, H., De Nicola, A.F., Effects of experimental diabetes on the concentration of corticosterone in central nervous system, serum and adrenal glands (1981) JSteroid Biochem, 14, pp. 1279-1284 
504 |a Tornello, S., Fridman, O., Weisenberg, L., Coirini, H., De Nicola, A.F., Differences in corticosterone binding by regions of the central nervous system in normal and diabetic rats (1981) JSteroid Biochem, 14, pp. 77-81 
504 |a Valastro, B., Cossette, N., Lavoie, N., Gagnon, F., Trudeau, J., Massicote, M., Up-regulation of glutamate receptors is associated with LTP defects in the early stages of diabetes mellitus (2002) Diabetologia, 45, pp. 642-650 
504 |a West, M., Regionally specific loss of neurons in the aging human hippocampus (1993) NeurobiolAging, 14, pp. 287-293 
504 |a Yau, J., Noble, J., Chapman, K., Seckl, J., Differential regulation of variant glucocorticoid receptor mRNAs in the rat hippocampus by the antidepressant fluoxetine (2004) Brain ResMolBrain Res, 129, pp. 189-192 
520 3 |a Cerebral dysfunctions, including a high incidence of depression, are common findings in human type 1 diabetes mellitus. An association between depression and defective hippocampal neurogenesis has been proposed and, in rodents, antidepressant therapy restores neuronal proliferation in the dentate gyrus. Hippocampal neurogenesis is also deficient in diabetic mice, which led us to study whether the selective serotonin reuptake inhibitor fluoxetine influences cell proliferation in streptozotocin-diabetic animals. Diabetic and control C57BL/6 mice received fluoxetine (10 mg/kg/day, i.p., 10 days) and dentate gyrus cell proliferation was measured after a single injection of 5-bromo-2′-deoxyuridine (BrdU). Diabetic mice showed reduced cell proliferation. Fluoxetine treatment, although having no effect in controls, corrected this parameter in diabetic mice. The phenotype of newly generated cells was analysed by confocal microscopy after seven daily BrdU injections, using Tuj-1/β-III tubulin as a marker for immature neurones and glial fibrillary acidic protein for astrocytes. In controls, the proportion of Tuj-1-BrdU-positive cells over total BrdU cells was ∼70%. In vehicle-treated diabetic mice, immature neurones decreased to 56% and fluoxetine brought this proportion back to control values without affecting astrocytes. Therefore, fluoxetine preferentially increased the proliferation of cells with a neuronal phenotype. In addition, neurones were counted in the hilus of the dentate gyrus; a 30% decrease was found in diabetic mice compared with controls, whereas this neuronal loss was prevented by fluoxetine. In conclusion, fluoxetine treatment restored neuroplasticity-related hippocampal alterations of diabetic mice. These findings may be potentially important to counteract diabetes-associated depression in humans. © The Authors (2006).  |l eng 
593 |a Laboratory of Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine, National Research Council Argentina, Obligado 2490 1428 Buenos Aires, Argentina 
593 |a Faculty of Medicine, University of Buenos Aires, Argentina 
593 |a CNRS UMR 7059, Université Paris 7/Diderot, Paris, France 
690 1 0 |a 5-BROMO-2′-DEOXYURIDINE 
690 1 0 |a DENTATE GYRUS 
690 1 0 |a FLUOXETINE 
690 1 0 |a TYPE 1 DIABETES 
690 1 0 |a ANTIDEPRESSANT AGENT 
690 1 0 |a BETA TUBULIN 
690 1 0 |a BETA TUBULIN III 
690 1 0 |a BROXURIDINE 
690 1 0 |a CELL MARKER 
690 1 0 |a FLUOXETINE 
690 1 0 |a GLIAL FIBRILLARY ACIDIC PROTEIN 
690 1 0 |a SEROTONIN UPTAKE INHIBITOR 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a ANIMAL EXPERIMENT 
690 1 0 |a ANIMAL MODEL 
690 1 0 |a ANIMAL TISSUE 
690 1 0 |a ARTICLE 
690 1 0 |a ASTROCYTE 
690 1 0 |a BRAIN DYSFUNCTION 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CONFOCAL MICROSCOPY 
690 1 0 |a CONTROLLED STUDY 
690 1 0 |a DENTATE GYRUS 
690 1 0 |a DEPRESSION 
690 1 0 |a DISEASE ASSOCIATION 
690 1 0 |a DRUG EFFECT 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a INSULIN DEPENDENT DIABETES MELLITUS 
690 1 0 |a MALE 
690 1 0 |a MOUSE 
690 1 0 |a NERVE CELL PLASTICITY 
690 1 0 |a NERVOUS SYSTEM DEVELOPMENT 
690 1 0 |a NEUROBLAST 
690 1 0 |a NONHUMAN 
690 1 0 |a PHENOTYPE 
690 1 0 |a PRIORITY JOURNAL 
690 1 0 |a STREPTOZOCIN DIABETES 
690 1 0 |a ANIMALS 
690 1 0 |a ANTIDEPRESSIVE AGENTS, SECOND-GENERATION 
690 1 0 |a BROMODEOXYURIDINE 
690 1 0 |a CELL COUNT 
690 1 0 |a CELL PROLIFERATION 
690 1 0 |a CYTOPLASMIC GRANULES 
690 1 0 |a DIABETES MELLITUS, EXPERIMENTAL 
690 1 0 |a FLUORESCENT ANTIBODY TECHNIQUE 
690 1 0 |a FLUOXETINE 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a IMMUNOHISTOCHEMISTRY 
690 1 0 |a MALE 
690 1 0 |a MICE 
690 1 0 |a MICE, INBRED C57BL 
690 1 0 |a MICROSCOPY, CONFOCAL 
690 1 0 |a NEUROGLIA 
690 1 0 |a NEURONAL PLASTICITY 
690 1 0 |a NEURONS 
700 1 |a Roig, P. 
700 1 |a Homo-Delarche, F. 
700 1 |a De Nicola, A. 
700 1 |a Saravia, F. 
773 0 |d 2006  |g v. 23  |h pp. 1539-1546  |k n. 6  |p Eur. J. Neurosci.  |x 0953816X  |w (AR-BaUEN)CENRE-4671  |t European Journal of Neuroscience 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33645105249&doi=10.1111%2fj.1460-9568.2006.04691.x&partnerID=40&md5=1d25f63cdef41d650d974e1d4a27d615  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1111/j.1460-9568.2006.04691.x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_0953816X_v23_n6_p1539_Beauquis  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0953816X_v23_n6_p1539_Beauquis  |y Registro en la Biblioteca Digital 
961 |a paper_0953816X_v23_n6_p1539_Beauquis  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 82812