Estrogens and neuroendocrine hypothalamic-pituitary-adrenal axis function

The function of the HPA axis is subject to regulation by many factors, which achieve relevance under normal and pathological conditions. In the case of aging, this period of life is associated with disturbances of the HPA axis and signs of hippocampal vulnerability. We examined 20-month-old male rat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: De Nicola, A.F
Otros Autores: Saravia, F.E, Beauquis, J., Pietranera, L., Ferrini, M.G, Arzt E., Guitelman M, Bronstein M.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11434caa a22011777a 4500
001 PAPER-21788
003 AR-BaUEN
005 20230518205316.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33745803474 
024 7 |2 cas  |a Estrogens; Steroids 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a De Nicola, A.F. 
245 1 0 |a Estrogens and neuroendocrine hypothalamic-pituitary-adrenal axis function 
260 |c 2006 
270 1 0 |m De Nicola, A.F.; Instituto de Biología Y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina; email: denicola@dna.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Engelmann, M., Landgraf, R., Wotjak, C.T., The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: An old concept revisited (2004) Front Neuroendocrinol, 25, pp. 132-149 
504 |a Angulo, J.A., Ledoux, M., McEwen, B.S., Genomic effects of cold and isolation stress on magnocellular vasopressin mRNA-containing cells in the hypothalamus of the rat (1991) J Neurochem, 23, pp. 2033-2038 
504 |a (1998) Williams Textbook of Endocrinology, , Wilson JD, Foster DW, Kronenberg HM, Larsen PR (eds): Philadelphia, Saunders 
504 |a De Kloet, E.R., Joels, M., Holsboer, F., Stress and the brain: From adaptation to disease (2005) Nat Rev Neurosci, 6, pp. 463-475 
504 |a Hurbin, A., Boissin-Agasse, L., Orcel, H., Rabié, A., Joux, N., Desarrménien, G., Richard, P., Moos, F.C., The V1a and V1b, but not the V2, vasopressin receptor genes are expressed in the supraoptic nucleus of the rat hypothalamus, and the transcripts are essentially colocalized in the vasopressinergic magnocellular neurons (1998) Endocrinology, 139, pp. 4701-4707 
504 |a Ratka, A., Sutanto, W., Bloemers, M., De Kloet, E.R., On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation (1989) Neuroendocrinology, 50, pp. 117-123 
504 |a Magariños, A.M., Ferrini, M., De Nicola, A.F., Corticosteroid receptors and glucocorticoid content in microdissected brain regions: Correlative aspects (1989) Neuroendocrinology, 50, pp. 673-678 
504 |a Edwards, C.R., Stewart, P.M., Burt, D., McIntyre, M.A., De Kloet, E.R., Brett, L., Sutanto, W., Monder, C., Localisation of 11beta-hydroxysteroid dehydrogenase: Tissue-specific protector of the mineralocorticoid receptor (1988) Lancet, 2, pp. 986-999 
504 |a Funder, J.W., Aldosterone, mineralocorticoid receptors and vascular inflammation (2004) Mol Cell Endocrinol, 217, pp. 263-269 
504 |a Perrot-Applanat, M., Racadot, O., Milgrom, E., Specific localization of plasma corticosteroid-binding globulin in pituitary corticotrophs (1984) Endocrinology, 115, pp. 559-569 
504 |a Sapolsky, R., Krey, L.C., McEwen, B.S., The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis (1986) Endocr Rev, 7, pp. 284-304 
504 |a Van Eekelen, J.A.M., Rots, N.Y., Sutanto, W., De Kloet, E.R., The effect of aging on stress responsiveness and central corticosteroid receptors in the Brown Norway rat (1991) Neurobiol Aging, 13, pp. 159-170 
504 |a Tornello, S., Orti, E., De Nicola, A.F., Rainbow, T.C., McEwen, B.S., Regulation of glucocorticoid receptors in brain by CORT treatment of adrenalectomized rats (1982) Neuroendocrinology, 35, pp. 411-417 
504 |a Watanabe, Y., Gould, E., McEwen, B.S., Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons (1992) Brain Res, 588, pp. 341-345 
504 |a Ferrini, M., Piroli, G., Frontera, M., Falbo, A., Lima, A., De Nicola, A.F., Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immunoreactivity in hippocampus of aging male rats (1999) Neuroendocrinology, 69, pp. 129-137 
504 |a Herman, J.P., Schafer, M.K., Young, E.A., Thompson, R., Doiuglass, J., Akil, H., Watson, S.J., Evidence for hippocampal regulation of neuroendocrine neurones of the hypothalamic-pituitary-adrenocortical axis (1989) J Neurosci, 9, pp. 3071-3082 
504 |a Magariños, A.M., Somoza, G., De Nicola, A.F., Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats (1987) Horm Metab Res, 19, pp. 105-109 
504 |a Revsin, Y., Saravia, F., Roig, P., Lima, A., De Kloet, E.R., Homo-Delarche, F., De Nicola, A.F., Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes (2005) Brain Res, 1038, pp. 22-31 
504 |a Shughrue, P.J., Lane, M.V., Merchentaler, I., Comparative distribution of estrogen receptor α and β mRNA in the rat central nervous system (1997) J Comp Neurol, 388, pp. 507-525 
504 |a Gould, E., Wooley, C.S., Frankfurt, M., McEwen, B.S., Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood (1990) J Neurosci, 10, pp. 1286-1291 
504 |a Goodman, Y., Bruce, A.J., Cheng, B., Mattson, M.P., Estrogens attenuate and CORT exacerbates excitotoxicity, oxidative injury, and amyloid-peptide toxicity in hippocampal neurons (1996) J Neurochem, 66, pp. 1836-1844 
504 |a Cameron, H., McKay, R.D.G., Restoring production of hippocampal neurons in old age (1999) Nature Neurosci, 2, pp. 894-897 
504 |a Isgor, C., Watson, S.J., Estrogen receptor α and β mRNA expressions by proliferating and differentiating cells in the adult rat dentate gyrus and subventricular zone (2005) Neuroscience, 134, pp. 847-856 
504 |a Pfeiffer, A., Lapointe, B., Barden, N., Hormonal regulation of type II glucocorticoid receptor messenger ribonucleic acid in rat brain (1991) Endocrinology, 129, pp. 2166-2174 
504 |a Ferrini, M., De Nicola, A.F., Estrogens up-regulate type I and type II glucocorticoid receptors in brain regions from ovariectomized rats (1991) Life Sci, 48, pp. 2593-2601 
504 |a Ferrini, M., Lima, A., De Nicola, A.F., Estradiol abolishes down-regulation of glucocorticoid receptors in brain (1995) Life Sci, 57, pp. 2403-2412 
504 |a Lephart, E.D., Galindo, E., Bu, L.H., Stress (hypothalamic-pituitary-adrenal axis) and pain response in male rats exposed lifelong to high vs. low phytoestrogen diets (2003) Neurosci Lett, 342, pp. 65-68 
504 |a Isgor, C., Cecchi, M., Kabbai, M., Akil, H., Watson, S.J., Estrogen receptor beta in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by CORT (2003) Neuroscience, 121, pp. 837-845 
504 |a Nomura, M., McKenna, E., Korach, K.S., Pfaff, D.W., Ogawa, S., Estrogen receptor-beta regulates transcript levels for oxytocin and arginine vasopressin in the hypothalamic paraventricular nucleus of male mice (2002) Brain Res Mol Brain Res, 30, p. 109 
504 |a McEwen, B.S., Estrogen actions throughout the brain (2002) Rec Progr Horm Res, 57, pp. 357-384 
504 |a Ferrini, M., Bisagno, V., Piroli, G., Grillo, C., Gonzalez Deniselle, M.C., De Nicola, A.F., Effects of estrogens on choline-acetyltransferase immunoreactivity and GAP43 mRENA in the forebrain of young and aging male rats (2002) Cell Mol Neurobiol, 22, pp. 289-301 
504 |a Wong, E.Y.H., Herbert, J., Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus (2005) Eur J Neurosci, 22, pp. 785-792 
520 3 |a The function of the HPA axis is subject to regulation by many factors, which achieve relevance under normal and pathological conditions. In the case of aging, this period of life is associated with disturbances of the HPA axis and signs of hippocampal vulnerability. We examined 20-month-old male rats, in which abnormalities of the HPA axis included altered response to stress, reduced effectiveness of the steroid negative feedback and low expression of hippocampal glucocorticoid receptors (GR). Estrogen treatment of aging rats normalized the response to stress, restored the dexamethasone inhibition of the stress response and increased GR density in defined hippocampal areas. Although estrogens could influence the hippocampus of aging animals directly, their effects could be also mediated by estrogen-sensitive forebrain cholinergic neurons projecting to the hippocampus. Additionally, estrogens normalized the deficient granule cell proliferation that aging mice present in the dentate gyrus, and attenuated several markers of hippocampal aging, such as astrocytosis, high lipofucsin content and neuronal loss in the hilus of the dentate gyrus. These effects may be important for the regulation of the HPA axis, in the context that hippocampal function as a whole was normalized by estrogen action. Therefore, estrogens are powerful neuroprotectants in cases of hippocampal dysfunction, and as part of this effect, they contribute to stabilize the function of the HPA axis. Copyright © 2006 S. Karger AG.  |l eng 
593 |a Laboratory of Neuroendocrine Biochemisty, Instituto de Biología Y Medicina Experimental, Buenos Aires, Argentina 
593 |a Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina 
593 |a Research and Education Institute, Harbor-UCLA Medical Center, Urology, Torrance, CA, United States 
593 |a Instituto de Biología Y Medicina Experimental, Obligado 2490, 1428 Buenos Aires, Argentina 
690 1 0 |a ESTROGEN 
690 1 0 |a STEROID 
690 1 0 |a ADRENAL GLAND 
690 1 0 |a AGING 
690 1 0 |a ANIMAL 
690 1 0 |a CHOLINERGIC NERVE 
690 1 0 |a CONFERENCE PAPER 
690 1 0 |a DRUG EFFECT 
690 1 0 |a FEEDBACK SYSTEM 
690 1 0 |a FOREBRAIN 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a HUMAN 
690 1 0 |a HYPOPHYSIS ADRENAL SYSTEM 
690 1 0 |a HYPOTHALAMUS HYPOPHYSIS SYSTEM 
690 1 0 |a METABOLISM 
690 1 0 |a NEUROSECRETION 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a RAT 
690 1 0 |a ADRENAL GLANDS 
690 1 0 |a AGING 
690 1 0 |a ANIMALS 
690 1 0 |a CHOLINERGIC FIBERS 
690 1 0 |a ESTROGENS 
690 1 0 |a FEEDBACK, BIOCHEMICAL 
690 1 0 |a HIPPOCAMPUS 
690 1 0 |a HUMANS 
690 1 0 |a HYPOTHALAMO-HYPOPHYSEAL SYSTEM 
690 1 0 |a NEUROSECRETORY SYSTEMS 
690 1 0 |a PITUITARY-ADRENAL SYSTEM 
690 1 0 |a PROSENCEPHALON 
690 1 0 |a RATS 
690 1 0 |a STEROIDS 
700 1 |a Saravia, F.E. 
700 1 |a Beauquis, J. 
700 1 |a Pietranera, L. 
700 1 |a Ferrini, M.G. 
700 1 |a Arzt E. 
700 1 |a Guitelman M 
700 1 |a Bronstein M. 
773 0 |d 2006  |g v. 35  |h pp. 157-168  |p Front. Horm. Res.  |x 03013073  |z 3805581556  |z 9783805581554  |t Frontiers of Hormone Research 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33745803474&doi=10.1159%2f000094324&partnerID=40&md5=8925ceb08d17bc34574c950a455b40b4  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1159/000094324  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03013073_v35_n_p157_DeNicola  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03013073_v35_n_p157_DeNicola  |y Registro en la Biblioteca Digital 
961 |a paper_03013073_v35_n_p157_DeNicola  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 82741