The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation
The molecular basis of the hydroxylation reaction of the Cα of a C-terminal glycine catalyzed by peptidylglycine α-hydroxylating monooxygenase (PHM) was investigated using hybrid quantum-classical (QM-MM) computational techniques. We have identified the most reactive oxygenated species and presented...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , , , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 12652caa a22017177a 4500 | ||
|---|---|---|---|
| 001 | PAPER-21740 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205314.0 | ||
| 008 | 190411s2006 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-33749526867 | |
| 024 | 7 | |2 cas |a ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; cytochrome P450, 9035-51-2; glycine, 56-40-6, 6000-43-7, 6000-44-8; hydrogen, 12385-13-6, 1333-74-0; proton, 12408-02-5, 12586-59-3; unspecific monooxygenase, 9012-80-0, 9037-52-9, 9038-14-6; Hydrogen, 1333-74-0; Mixed Function Oxygenases, 1.-; Multienzyme Complexes; Oxygen, 7782-44-7; peptidylglycine monooxygenase, 1.14.17.3 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JACSA | ||
| 100 | 1 | |a Crespo, A. | |
| 245 | 1 | 4 | |a The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation |
| 260 | |c 2006 | ||
| 270 | 1 | 0 | |m Amzel, L.M.; Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States; email: mario@neruda.med.jhmi.edu |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Holm, R.H., Kennepohl, P., Solomon, E.I., (1996) Chem. Rev., 96, pp. 2239-2314 | ||
| 504 | |a Solomon, E.I., Sundaram, U.M., Machonkin, T.E., (1996) Chem. Rev., 96, pp. 2563-2606 | ||
| 504 | |a Klinman, J.P., (1996) Chem. Rev., 96, pp. 2541-2562 | ||
| 504 | |a Cuttitta, F., (1993) Anat. Rec., 236, pp. 87-93 | ||
| 504 | |a Merkler, D.J., (1994) Enzyme Microb. Technol., 16, pp. 450-456 | ||
| 504 | |a Eipper, B.A., Stoffers, D.A., Mains, R.E., (1992) Annu. Rev. Neurosci., 15, pp. 57-85 | ||
| 504 | |a Bradbury, A.F., Finnie, M.D., Smyth, D.G., (1992) Nature, 298, pp. 686-688 | ||
| 504 | |a Eipper, B.A., Milgram, S.L., Husten, E.J., Yun, H.Y., Mains, R.E., (1993) Protein Sci., 2, pp. 489-497 | ||
| 504 | |a Bell, J., El Meskini, R., D'Amato, D., Mains, R.E., Eipper, B.A., (2003) Biochemistry, 42, pp. 7133-7142 | ||
| 504 | |a Eipper, B.A., Quon, A.S., Mains, R.E., Boswell, J.S., Blackburn, N.J., (1995) Biochemistry, 34, pp. 2857-2865 | ||
| 504 | |a Takahashi, K., Onami, T., Noguchi, M., (1998) Biochem. J., 336, pp. 131-137 | ||
| 504 | |a Francisco, W.A., Merkler, D.J., Blackburn, N.J., Klinman, J.P., (1998) Biochemistry, 37, pp. 8244-8252 | ||
| 504 | |a Francisco, W.A., Knapp, M.J., Blackburn, N.J., Klinman, J.P., (2002) J. Am. Chem. Soc., 124, pp. 8194-8195 | ||
| 504 | |a Francisco, W.A., Blackburn, N.J., Klinman, J.P., (2003) Biochemistry, 42, pp. 1813-1819 | ||
| 504 | |a Blackburn, N.J., Rhames, F.C., Ralle, M., Jaron, S., (2000) J. Biol. Inorg. Chem., 5, pp. 341-353 | ||
| 504 | |a Boswell, J.S., Reedy, B.J., Kulathila, R., Merkler, D., Blackburn, N.J., (1996) Biochemistry, 35, pp. 12241-12250 | ||
| 504 | |a Jaron, S., Blackburn, N.J., (2001) Biochemistry, 40, pp. 6867-6875 | ||
| 504 | |a Prigge, S.T., Kolhekar, A.S., Eipper, B.A., Mains, R.E., Amzel, L.M., (1997) Science, 278, pp. 1300-1306 | ||
| 504 | |a Prigge, S.T., Kolhekar, A.S., Eipper, B.A., Mains, R.E., Amzel, L.M., (1999) Nature Struct. Biol., 6, pp. 976-983 | ||
| 504 | |a Jaron, S., Blackburn, N.J., (1999) Biochemistry, 38, pp. 15086-15096 | ||
| 504 | |a Prigge, S.T., Mains, R.E., Eipper, B.A., Amzel, L.M., (2000) Cell. Mol. Life Sci., 57, pp. 1236-1259 | ||
| 504 | |a Ljones, T., Skotland, T., (1984) Copper Proteins and Copper Enzymes, 2, pp. 131-157. , Lontie, R.; Ed.; CRC Press: Boca Raton, FL | ||
| 504 | |a Fitzpatrick, P.F., Flory, D.R., Villafranca, J.J., (1985) Biochemistry, 24, pp. 2108-2114 | ||
| 504 | |a Fitzpatrick, P.F., Villafranca, J.J., (1985) J. Am. Chem. Soc., 107, pp. 5022-5023 | ||
| 504 | |a Miller, S.M., Klinman, J.P., (1985) Biochemistry, 24, pp. 2114-2127 | ||
| 504 | |a Wimalasena, K., May, S.W., (1989) J. Am. Chem. Soc., 111, pp. 2729-2731 | ||
| 504 | |a Stewart, L.C., Klinman, J.P., (1988) Annu. Rev. Biochem., 57, pp. 551-592 | ||
| 504 | |a Chen, P., Solomon, E.I., (2004) J. Am. Chem. Soc., 126, pp. 4991-5000 | ||
| 504 | |a Decker, A., Solomon, E.I., (2005) Curr. Op. Chem. Biol., 9, pp. 152-163 | ||
| 504 | |a Kamachi, T., Kihara, N., Shiota, Y., Yoshizawa, K., (2005) Inorg. Chem., 44, pp. 4226-4263 | ||
| 504 | |a Yoshizawa, K., Kihara, N., Kamachi, T., Shiota, Y., (2006) Inorg. Chem., 45, pp. 3034-3041 | ||
| 504 | |a Tian, G., Berry, J.A., Klinman, J.P., (1994) Biochemistry, 33, pp. 226-234 | ||
| 504 | |a Evans, J.P., Ahn, K., Klinman, J.P., (2003) J. Biol. Chem., 278, pp. 49691-49698 | ||
| 504 | |a Prigge, S.T., Eipper, B.A., Mains, R.E., Amzel, L.M., (2004) Science, 304, pp. 864-867 | ||
| 504 | |a Klinman, J.P., (2006) J. Biol. Chem., 281, pp. 3013-3016 | ||
| 504 | |a Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., (1995) J. Am. Chem. Soc., 117, pp. 5179-5197 | ||
| 504 | |a Wang, J., Cieplak, P., Kollman, P.A., (2000) J. Comput. Chem., 21, pp. 1049-1074 | ||
| 504 | |a Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput. Phys., 23, pp. 327-341 | ||
| 504 | |a Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Di Nola, A., Haak, J.R., (1984) J. Chem. Phys., 81, pp. 3684-3690 | ||
| 504 | |a Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A., (1993) J. Phys. Chem., 97, pp. 10269-10280 | ||
| 504 | |a www.amber.scripts.edu; Band, L., (2003) Curr. Op. Chem. Biol., 7, pp. 143-149 | ||
| 504 | |a Warshel, A., Levitt, M., (1976) J. Mol. Biol., 103, pp. 227-249 | ||
| 504 | |a Zhang, X., Harrison, D.H.T., Cui, Q., (2002) J. Am. Chem. Soc., 124, pp. 14871-14878 | ||
| 504 | |a Ryde, U., (2003) Curr. Op. Chem. Biol., 7, pp. 136-142 | ||
| 504 | |a Ridder, L., Harvey, J.N., Rietjens, I.M.C.M., Vervoort, J., Mulholland, A.J., (2003) J. Phys. Chem. B, 107, pp. 2118-2426 | ||
| 504 | |a Schöneboom, J.C., Cohen, S., Lin, H., Shaik, S., Thiel, W., (2004) J. Am. Chem. Soc., 126, pp. 4017-4034 | ||
| 504 | |a Devi-Kesavan, L.S., Gao, J., (2003) J. Am. Chem. Soc., 125, pp. 1532-1540 | ||
| 504 | |a Crespo, A., Scherlis, D.A., Marti, M.A., Ordejon, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736 | ||
| 504 | |a Soler, J.M., Artacho, E., Gale, J., Garcia, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.J., (2002) Phys: Cond. Matt., 14, pp. 2745-2779 | ||
| 504 | |a Troullier, N., Martins, J.L., (1991) Phys. Rev. B, 43, pp. 1993-2006 | ||
| 504 | |a Louie, S.G., Froyen, S., Cohen, M.L., (1982) Phys. Rev. B, 26, pp. 1738-1742 | ||
| 504 | |a Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868 | ||
| 504 | |a Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., (1999) J. Chem. Phys., 110, pp. 10452-10467 | ||
| 504 | |a Franzen, S., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 16754-16759 | ||
| 504 | |a Ghosh, A., Almlöf, J., Que Jr., L., (1994) J. Phys. Chem., 98, pp. 5576-5579 | ||
| 504 | |a Groves, J.T., Han, Y.-Z., (1995) Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd Ed., p. 3. , Ortiz de Montellano, P. R., Ed.; Plenum Press: New York | ||
| 504 | |a Sono, M., Roach, M.P., Coulter, E.D., Dawson, J.H., (1996) Chem. Rev., 96, p. 2841 | ||
| 504 | |a Groves, J.T., (1985) J. Chem. Educ., 62, p. 928 | ||
| 504 | |a Groves, J.T., McClusky, G.A., (1976) J. Am. Chem. Soc., 98, p. 859 | ||
| 504 | |a Groves, J.T., Van Der Puy, M., (1976) J. Am. Chem. Soc., 98, p. 5290 | ||
| 504 | |a Groves, J.T., Subramanian, D.V., (1984) J. Am. Chem. Soc., 106, p. 2177 | ||
| 504 | |a Groves, J.T., Watanabe, Y., (1988) J. Am. Chem. Soc., 110, p. 8443 | ||
| 504 | |a Schöneboom, L.H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F., Shaik, S., (2002) J. Am. Chem. Soc., 124, pp. 8142-8151 | ||
| 504 | |a Guallar, V., Friesner, R.A., (2004) J. Am. Chem. Soc., 126, p. 8501 | ||
| 504 | |a Kamachi, T., Yoshizawa, K., (2003) J. Am. Chem. Soc., 125, p. 4652 | ||
| 504 | |a Harris, D.L., Loew, G.H., (1998) J. Am. Chem. Soc., 120, pp. 8941-8948 | ||
| 520 | 3 | |a The molecular basis of the hydroxylation reaction of the Cα of a C-terminal glycine catalyzed by peptidylglycine α-hydroxylating monooxygenase (PHM) was investigated using hybrid quantum-classical (QM-MM) computational techniques. We have identified the most reactive oxygenated species and presented new insights into the hydrogen abstraction (H-abstraction) mechanism operative in PHM. Our results suggest that O2 binds to CuB to generate CuB II-O2 .- followed by electron transfer (ET) from CuA to form CuB I-O2 .-. The computed potential energy profiles for the H-abstraction reaction for CuB II-O2 .-, CuB I-O 2 ., and [CuB II-OOH]+ species indicate that none of these species can be responsible for abstraction. However, the latter species can spontaneously form [CuBO] +2 (which consists of a two-unpaired-electrons [CuBO] + moiety ferromagneticaly coupled with a radical cation located over the three CuB ligands, in the quartet spin ground state) by abstracting a proton from the surrounding solvent. Both this monooxygenated species and the one obtained by reduction with ascorbate, [CuBO] +, were found to be capable of carrying out the H-abstraction; however, whereas the former abstracts the hydrogen atom concertedly with almost no activation energy, the later forms an intermediate that continues the reaction by a rebinding step. We propose that the active species in H-abstraction in PHM is probably [CuBO]+2 because it is formed exothermically and can concertedly abstract the substrate HA atom with the lower overall activation energy. Interestingly, this species resembles the active oxidant in cytochrome P450 enzymes, Compound I, suggesting that both PHM and cytochrome P450 enzymes may carry out substrate hydroxylation by using a similar mechanism. © 2006 American Chemical Society. |l eng | |
| 593 | |a Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE-CONICET, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina | ||
| 593 | |a Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL 32611-8435, United States | ||
| 593 | |a Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States | ||
| 690 | 1 | 0 | |a CYTOCHROME P450 ENZYMES |
| 690 | 1 | 0 | |a ELECTRON TRANSFER (ET) |
| 690 | 1 | 0 | |a PEPTIDYLGLYCINE Α-HYDROXYLATING MONOOXYGENASE (PHM) |
| 690 | 1 | 0 | |a QUANTUM-CLASSICAL (QM-MM) |
| 690 | 1 | 0 | |a ACTIVATION ENERGY |
| 690 | 1 | 0 | |a CATALYSTS |
| 690 | 1 | 0 | |a COMPUTER SIMULATION |
| 690 | 1 | 0 | |a GROUND STATE |
| 690 | 1 | 0 | |a HYDROXYLATION |
| 690 | 1 | 0 | |a POSITIVE IONS |
| 690 | 1 | 0 | |a PROTEINS |
| 690 | 1 | 0 | |a QUANTUM THEORY |
| 690 | 1 | 0 | |a GLYCEROL |
| 690 | 1 | 0 | |a ASCORBIC ACID |
| 690 | 1 | 0 | |a CYTOCHROME P450 |
| 690 | 1 | 0 | |a GLYCINE |
| 690 | 1 | 0 | |a HYDROGEN |
| 690 | 1 | 0 | |a PEPTIDYLGLYCINE ALPHA HYDROXYLATING MONOOXYGENASE |
| 690 | 1 | 0 | |a PROTON |
| 690 | 1 | 0 | |a REACTIVE OXYGEN METABOLITE |
| 690 | 1 | 0 | |a SOLVENT |
| 690 | 1 | 0 | |a UNCLASSIFIED DRUG |
| 690 | 1 | 0 | |a UNSPECIFIC MONOOXYGENASE |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a CARBOXY TERMINAL SEQUENCE |
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a CHEMICAL BINDING |
| 690 | 1 | 0 | |a COMPUTER SIMULATION |
| 690 | 1 | 0 | |a ELECTRON TRANSPORT |
| 690 | 1 | 0 | |a ENERGY |
| 690 | 1 | 0 | |a ENTHALPY |
| 690 | 1 | 0 | |a HYDROXYLATION |
| 690 | 1 | 0 | |a QUANTUM MECHANICS |
| 690 | 1 | 0 | |a REDUCTION |
| 690 | 1 | 0 | |a CATALYSIS |
| 690 | 1 | 0 | |a COMPUTER SIMULATION |
| 690 | 1 | 0 | |a HYDROGEN |
| 690 | 1 | 0 | |a HYDROXYLATION |
| 690 | 1 | 0 | |a KINETICS |
| 690 | 1 | 0 | |a MIXED FUNCTION OXYGENASES |
| 690 | 1 | 0 | |a MODELS, MOLECULAR |
| 690 | 1 | 0 | |a MULTIENZYME COMPLEXES |
| 690 | 1 | 0 | |a OXYGEN |
| 690 | 1 | 0 | |a QUANTUM THEORY |
| 690 | 1 | 0 | |a THERMODYNAMICS |
| 700 | 1 | |a Martí, M.A. | |
| 700 | 1 | |a Roitberg, A.E. | |
| 700 | 1 | |a Amzel, L.M. | |
| 700 | 1 | |a Estrin, D.A. | |
| 773 | 0 | |d 2006 |g v. 128 |h pp. 12817-12828 |k n. 39 |p J. Am. Chem. Soc. |x 00027863 |w (AR-BaUEN)CENRE-19 |t Journal of the American Chemical Society | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749526867&doi=10.1021%2fja062876x&partnerID=40&md5=58d7b9622c9e11b4d5cdc58d16c7f198 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1021/ja062876x |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_00027863_v128_n39_p12817_Crespo |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v128_n39_p12817_Crespo |y Registro en la Biblioteca Digital |
| 961 | |a paper_00027863_v128_n39_p12817_Crespo |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 82693 | ||