The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation

The molecular basis of the hydroxylation reaction of the Cα of a C-terminal glycine catalyzed by peptidylglycine α-hydroxylating monooxygenase (PHM) was investigated using hybrid quantum-classical (QM-MM) computational techniques. We have identified the most reactive oxygenated species and presented...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Crespo, A.
Otros Autores: Martí, M.A, Roitberg, A.E, Amzel, L.M, Estrin, D.A
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2006
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12652caa a22017177a 4500
001 PAPER-21740
003 AR-BaUEN
005 20230518205314.0
008 190411s2006 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-33749526867 
024 7 |2 cas  |a ascorbic acid, 134-03-2, 15421-15-5, 50-81-7; cytochrome P450, 9035-51-2; glycine, 56-40-6, 6000-43-7, 6000-44-8; hydrogen, 12385-13-6, 1333-74-0; proton, 12408-02-5, 12586-59-3; unspecific monooxygenase, 9012-80-0, 9037-52-9, 9038-14-6; Hydrogen, 1333-74-0; Mixed Function Oxygenases, 1.-; Multienzyme Complexes; Oxygen, 7782-44-7; peptidylglycine monooxygenase, 1.14.17.3 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JACSA 
100 1 |a Crespo, A. 
245 1 4 |a The catalytic mechanism of peptidylglycine α-hydroxylating monooxygenase investigated by computer simulation 
260 |c 2006 
270 1 0 |m Amzel, L.M.; Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States; email: mario@neruda.med.jhmi.edu 
506 |2 openaire  |e Política editorial 
504 |a Holm, R.H., Kennepohl, P., Solomon, E.I., (1996) Chem. Rev., 96, pp. 2239-2314 
504 |a Solomon, E.I., Sundaram, U.M., Machonkin, T.E., (1996) Chem. Rev., 96, pp. 2563-2606 
504 |a Klinman, J.P., (1996) Chem. Rev., 96, pp. 2541-2562 
504 |a Cuttitta, F., (1993) Anat. Rec., 236, pp. 87-93 
504 |a Merkler, D.J., (1994) Enzyme Microb. Technol., 16, pp. 450-456 
504 |a Eipper, B.A., Stoffers, D.A., Mains, R.E., (1992) Annu. Rev. Neurosci., 15, pp. 57-85 
504 |a Bradbury, A.F., Finnie, M.D., Smyth, D.G., (1992) Nature, 298, pp. 686-688 
504 |a Eipper, B.A., Milgram, S.L., Husten, E.J., Yun, H.Y., Mains, R.E., (1993) Protein Sci., 2, pp. 489-497 
504 |a Bell, J., El Meskini, R., D'Amato, D., Mains, R.E., Eipper, B.A., (2003) Biochemistry, 42, pp. 7133-7142 
504 |a Eipper, B.A., Quon, A.S., Mains, R.E., Boswell, J.S., Blackburn, N.J., (1995) Biochemistry, 34, pp. 2857-2865 
504 |a Takahashi, K., Onami, T., Noguchi, M., (1998) Biochem. J., 336, pp. 131-137 
504 |a Francisco, W.A., Merkler, D.J., Blackburn, N.J., Klinman, J.P., (1998) Biochemistry, 37, pp. 8244-8252 
504 |a Francisco, W.A., Knapp, M.J., Blackburn, N.J., Klinman, J.P., (2002) J. Am. Chem. Soc., 124, pp. 8194-8195 
504 |a Francisco, W.A., Blackburn, N.J., Klinman, J.P., (2003) Biochemistry, 42, pp. 1813-1819 
504 |a Blackburn, N.J., Rhames, F.C., Ralle, M., Jaron, S., (2000) J. Biol. Inorg. Chem., 5, pp. 341-353 
504 |a Boswell, J.S., Reedy, B.J., Kulathila, R., Merkler, D., Blackburn, N.J., (1996) Biochemistry, 35, pp. 12241-12250 
504 |a Jaron, S., Blackburn, N.J., (2001) Biochemistry, 40, pp. 6867-6875 
504 |a Prigge, S.T., Kolhekar, A.S., Eipper, B.A., Mains, R.E., Amzel, L.M., (1997) Science, 278, pp. 1300-1306 
504 |a Prigge, S.T., Kolhekar, A.S., Eipper, B.A., Mains, R.E., Amzel, L.M., (1999) Nature Struct. Biol., 6, pp. 976-983 
504 |a Jaron, S., Blackburn, N.J., (1999) Biochemistry, 38, pp. 15086-15096 
504 |a Prigge, S.T., Mains, R.E., Eipper, B.A., Amzel, L.M., (2000) Cell. Mol. Life Sci., 57, pp. 1236-1259 
504 |a Ljones, T., Skotland, T., (1984) Copper Proteins and Copper Enzymes, 2, pp. 131-157. , Lontie, R.; Ed.; CRC Press: Boca Raton, FL 
504 |a Fitzpatrick, P.F., Flory, D.R., Villafranca, J.J., (1985) Biochemistry, 24, pp. 2108-2114 
504 |a Fitzpatrick, P.F., Villafranca, J.J., (1985) J. Am. Chem. Soc., 107, pp. 5022-5023 
504 |a Miller, S.M., Klinman, J.P., (1985) Biochemistry, 24, pp. 2114-2127 
504 |a Wimalasena, K., May, S.W., (1989) J. Am. Chem. Soc., 111, pp. 2729-2731 
504 |a Stewart, L.C., Klinman, J.P., (1988) Annu. Rev. Biochem., 57, pp. 551-592 
504 |a Chen, P., Solomon, E.I., (2004) J. Am. Chem. Soc., 126, pp. 4991-5000 
504 |a Decker, A., Solomon, E.I., (2005) Curr. Op. Chem. Biol., 9, pp. 152-163 
504 |a Kamachi, T., Kihara, N., Shiota, Y., Yoshizawa, K., (2005) Inorg. Chem., 44, pp. 4226-4263 
504 |a Yoshizawa, K., Kihara, N., Kamachi, T., Shiota, Y., (2006) Inorg. Chem., 45, pp. 3034-3041 
504 |a Tian, G., Berry, J.A., Klinman, J.P., (1994) Biochemistry, 33, pp. 226-234 
504 |a Evans, J.P., Ahn, K., Klinman, J.P., (2003) J. Biol. Chem., 278, pp. 49691-49698 
504 |a Prigge, S.T., Eipper, B.A., Mains, R.E., Amzel, L.M., (2004) Science, 304, pp. 864-867 
504 |a Klinman, J.P., (2006) J. Biol. Chem., 281, pp. 3013-3016 
504 |a Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Kollman, P.A., (1995) J. Am. Chem. Soc., 117, pp. 5179-5197 
504 |a Wang, J., Cieplak, P., Kollman, P.A., (2000) J. Comput. Chem., 21, pp. 1049-1074 
504 |a Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput. Phys., 23, pp. 327-341 
504 |a Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., Di Nola, A., Haak, J.R., (1984) J. Chem. Phys., 81, pp. 3684-3690 
504 |a Bayly, C.I., Cieplak, P., Cornell, W.D., Kollman, P.A., (1993) J. Phys. Chem., 97, pp. 10269-10280 
504 |a www.amber.scripts.edu; Band, L., (2003) Curr. Op. Chem. Biol., 7, pp. 143-149 
504 |a Warshel, A., Levitt, M., (1976) J. Mol. Biol., 103, pp. 227-249 
504 |a Zhang, X., Harrison, D.H.T., Cui, Q., (2002) J. Am. Chem. Soc., 124, pp. 14871-14878 
504 |a Ryde, U., (2003) Curr. Op. Chem. Biol., 7, pp. 136-142 
504 |a Ridder, L., Harvey, J.N., Rietjens, I.M.C.M., Vervoort, J., Mulholland, A.J., (2003) J. Phys. Chem. B, 107, pp. 2118-2426 
504 |a Schöneboom, J.C., Cohen, S., Lin, H., Shaik, S., Thiel, W., (2004) J. Am. Chem. Soc., 126, pp. 4017-4034 
504 |a Devi-Kesavan, L.S., Gao, J., (2003) J. Am. Chem. Soc., 125, pp. 1532-1540 
504 |a Crespo, A., Scherlis, D.A., Marti, M.A., Ordejon, P., Roitberg, A.E., Estrin, D.A., (2003) J. Phys. Chem. B, 107, pp. 13728-13736 
504 |a Soler, J.M., Artacho, E., Gale, J., Garcia, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.J., (2002) Phys: Cond. Matt., 14, pp. 2745-2779 
504 |a Troullier, N., Martins, J.L., (1991) Phys. Rev. B, 43, pp. 1993-2006 
504 |a Louie, S.G., Froyen, S., Cohen, M.L., (1982) Phys. Rev. B, 26, pp. 1738-1742 
504 |a Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett., 77, pp. 3865-3868 
504 |a Eichinger, M., Tavan, P., Hutter, J., Parrinello, M., (1999) J. Chem. Phys., 110, pp. 10452-10467 
504 |a Franzen, S., (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 16754-16759 
504 |a Ghosh, A., Almlöf, J., Que Jr., L., (1994) J. Phys. Chem., 98, pp. 5576-5579 
504 |a Groves, J.T., Han, Y.-Z., (1995) Cytochrome P450: Structure, Mechanism and Biochemistry, 2nd Ed., p. 3. , Ortiz de Montellano, P. R., Ed.; Plenum Press: New York 
504 |a Sono, M., Roach, M.P., Coulter, E.D., Dawson, J.H., (1996) Chem. Rev., 96, p. 2841 
504 |a Groves, J.T., (1985) J. Chem. Educ., 62, p. 928 
504 |a Groves, J.T., McClusky, G.A., (1976) J. Am. Chem. Soc., 98, p. 859 
504 |a Groves, J.T., Van Der Puy, M., (1976) J. Am. Chem. Soc., 98, p. 5290 
504 |a Groves, J.T., Subramanian, D.V., (1984) J. Am. Chem. Soc., 106, p. 2177 
504 |a Groves, J.T., Watanabe, Y., (1988) J. Am. Chem. Soc., 110, p. 8443 
504 |a Schöneboom, L.H., Reuter, N., Thiel, W., Cohen, S., Ogliaro, F., Shaik, S., (2002) J. Am. Chem. Soc., 124, pp. 8142-8151 
504 |a Guallar, V., Friesner, R.A., (2004) J. Am. Chem. Soc., 126, p. 8501 
504 |a Kamachi, T., Yoshizawa, K., (2003) J. Am. Chem. Soc., 125, p. 4652 
504 |a Harris, D.L., Loew, G.H., (1998) J. Am. Chem. Soc., 120, pp. 8941-8948 
520 3 |a The molecular basis of the hydroxylation reaction of the Cα of a C-terminal glycine catalyzed by peptidylglycine α-hydroxylating monooxygenase (PHM) was investigated using hybrid quantum-classical (QM-MM) computational techniques. We have identified the most reactive oxygenated species and presented new insights into the hydrogen abstraction (H-abstraction) mechanism operative in PHM. Our results suggest that O2 binds to CuB to generate CuB II-O2 .- followed by electron transfer (ET) from CuA to form CuB I-O2 .-. The computed potential energy profiles for the H-abstraction reaction for CuB II-O2 .-, CuB I-O 2 ., and [CuB II-OOH]+ species indicate that none of these species can be responsible for abstraction. However, the latter species can spontaneously form [CuBO] +2 (which consists of a two-unpaired-electrons [CuBO] + moiety ferromagneticaly coupled with a radical cation located over the three CuB ligands, in the quartet spin ground state) by abstracting a proton from the surrounding solvent. Both this monooxygenated species and the one obtained by reduction with ascorbate, [CuBO] +, were found to be capable of carrying out the H-abstraction; however, whereas the former abstracts the hydrogen atom concertedly with almost no activation energy, the later forms an intermediate that continues the reaction by a rebinding step. We propose that the active species in H-abstraction in PHM is probably [CuBO]+2 because it is formed exothermically and can concertedly abstract the substrate HA atom with the lower overall activation energy. Interestingly, this species resembles the active oxidant in cytochrome P450 enzymes, Compound I, suggesting that both PHM and cytochrome P450 enzymes may carry out substrate hydroxylation by using a similar mechanism. © 2006 American Chemical Society.  |l eng 
593 |a Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE-CONICET, Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina 
593 |a Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL 32611-8435, United States 
593 |a Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205, United States 
690 1 0 |a CYTOCHROME P450 ENZYMES 
690 1 0 |a ELECTRON TRANSFER (ET) 
690 1 0 |a PEPTIDYLGLYCINE Α-HYDROXYLATING MONOOXYGENASE (PHM) 
690 1 0 |a QUANTUM-CLASSICAL (QM-MM) 
690 1 0 |a ACTIVATION ENERGY 
690 1 0 |a CATALYSTS 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a GROUND STATE 
690 1 0 |a HYDROXYLATION 
690 1 0 |a POSITIVE IONS 
690 1 0 |a PROTEINS 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a GLYCEROL 
690 1 0 |a ASCORBIC ACID 
690 1 0 |a CYTOCHROME P450 
690 1 0 |a GLYCINE 
690 1 0 |a HYDROGEN 
690 1 0 |a PEPTIDYLGLYCINE ALPHA HYDROXYLATING MONOOXYGENASE 
690 1 0 |a PROTON 
690 1 0 |a REACTIVE OXYGEN METABOLITE 
690 1 0 |a SOLVENT 
690 1 0 |a UNCLASSIFIED DRUG 
690 1 0 |a UNSPECIFIC MONOOXYGENASE 
690 1 0 |a ARTICLE 
690 1 0 |a CARBOXY TERMINAL SEQUENCE 
690 1 0 |a CATALYSIS 
690 1 0 |a CHEMICAL BINDING 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a ELECTRON TRANSPORT 
690 1 0 |a ENERGY 
690 1 0 |a ENTHALPY 
690 1 0 |a HYDROXYLATION 
690 1 0 |a QUANTUM MECHANICS 
690 1 0 |a REDUCTION 
690 1 0 |a CATALYSIS 
690 1 0 |a COMPUTER SIMULATION 
690 1 0 |a HYDROGEN 
690 1 0 |a HYDROXYLATION 
690 1 0 |a KINETICS 
690 1 0 |a MIXED FUNCTION OXYGENASES 
690 1 0 |a MODELS, MOLECULAR 
690 1 0 |a MULTIENZYME COMPLEXES 
690 1 0 |a OXYGEN 
690 1 0 |a QUANTUM THEORY 
690 1 0 |a THERMODYNAMICS 
700 1 |a Martí, M.A. 
700 1 |a Roitberg, A.E. 
700 1 |a Amzel, L.M. 
700 1 |a Estrin, D.A. 
773 0 |d 2006  |g v. 128  |h pp. 12817-12828  |k n. 39  |p J. Am. Chem. Soc.  |x 00027863  |w (AR-BaUEN)CENRE-19  |t Journal of the American Chemical Society 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-33749526867&doi=10.1021%2fja062876x&partnerID=40&md5=58d7b9622c9e11b4d5cdc58d16c7f198  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1021/ja062876x  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_00027863_v128_n39_p12817_Crespo  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00027863_v128_n39_p12817_Crespo  |y Registro en la Biblioteca Digital 
961 |a paper_00027863_v128_n39_p12817_Crespo  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 82693