Uniform bounds for the best Sobolev trace constant
We study the Sobolev trace embedding W1,p (Ω) → Lq(∂Ω), looking at the dependence of the best constant and the extremals on p and q. We prove that there exists a uniform bound (independent of (p, q)) for the best constant if and only if (p, q) lies far from (N, ∞). Also we study some limit cases, q...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | , |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2003
|
| Acceso en línea: | Registro en Scopus Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 04475caa a22005297a 4500 | ||
|---|---|---|---|
| 001 | PAPER-21391 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518205251.0 | ||
| 008 | 190411s2003 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-29744461102 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 100 | 1 | |a Bonder, J.F. | |
| 245 | 1 | 0 | |a Uniform bounds for the best Sobolev trace constant |
| 260 | |c 2003 | ||
| 270 | 1 | 0 | |m Bonder, J.F.; Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; email: jfbonder@dm.uba.ar |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Babuska, I., Osborn, J., Eigenvalue problems (1991) Handbook of Numer. Anal., 2. , North-Holland | ||
| 504 | |a Calderon, A.P., Intennedzate sapces and interpolation (1964) Stud. Math., 24, pp. 113-190 | ||
| 504 | |a Calderon, C.P., Milman, M., Interpolation of Sobolev spaces. The real method (1983) Indiana Univ. Math. J., 32, pp. 801-809 | ||
| 504 | |a Del Pino, M., Flores, C., Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains (2001) Communications in Partial Differential Equations, 26 (11-12), pp. 2189-2210 | ||
| 504 | |a Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Univ. Math. J., 37, pp. 687-698 | ||
| 504 | |a Escobar, J.F., Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate (1990) Comm. Pure Appl. Math., 43, pp. 857-883 | ||
| 504 | |a Escobar, J.F., Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature (1992) Ann. of Math., 136, pp. 1-50 | ||
| 504 | |a Bonder, J.F., Rossi, J.D., Existence results for the p-Laplacian with nonlinear boundary conditions (2001) Journal of Mathematical Analysis and Applications, 263 (1), pp. 195-223. , DOI 10.1006/jmaa.2001.7609 | ||
| 504 | |a Fernández Bonder, J., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Comm. Pure Appl. Anal., 1 (3), pp. 359-378 | ||
| 504 | |a Gilbarg, D., Ttudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer-Verlag, NY | ||
| 504 | |a Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Rat. Mech. Anal., 148, pp. 89-105 | ||
| 504 | |a Martinez, S., Rossi, J.D., Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition (2002) Abst. Appl. Anal., 7 (5), pp. 287-293 | ||
| 504 | |a Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150 | ||
| 504 | |a Vazquez, J.L., A strong mazimum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12 (3), pp. 191-202 | ||
| 520 | 3 | |a We study the Sobolev trace embedding W1,p (Ω) → Lq(∂Ω), looking at the dependence of the best constant and the extremals on p and q. We prove that there exists a uniform bound (independent of (p, q)) for the best constant if and only if (p, q) lies far from (N, ∞). Also we study some limit cases, q = ∞ with p > N or p = ∞ with 1 ≤ q ≤ ∞. |l eng | |
| 593 | |a Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina | ||
| 593 | |a Departamento de Matemática, Universidad Católica, Casilla 306, correo 22, Santiago, Chile | ||
| 593 | |a Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain | ||
| 593 | |a Departamento de Matemticas, U. Carlos III de Madrid, 28911 Legans, Spain | ||
| 690 | 1 | 0 | |a NONLINEAR BOUNDARY CONDITIONS |
| 690 | 1 | 0 | |a P-LAPLACIAN |
| 690 | 1 | 0 | |a SOBOLEV TRACE CONSTANTS |
| 700 | 1 | |a Rossi, J.D. | |
| 700 | 1 | |a Ferreira, R. | |
| 773 | 0 | |d 2003 |g v. 3 |h pp. 181-192 |k n. 2 |p Adv. Nonlinear Stud. |x 15361365 |t Advanced Nonlinear Studies | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-29744461102&partnerID=40&md5=e79828c44cdfcecc5820d25c67d9c051 |y Registro en Scopus |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_15361365_v3_n2_p181_Bonder |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15361365_v3_n2_p181_Bonder |y Registro en la Biblioteca Digital |
| 961 | |a paper_15361365_v3_n2_p181_Bonder |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 999 | |c 82344 | ||