Uniform bounds for the best Sobolev trace constant

We study the Sobolev trace embedding W1,p (Ω) → Lq(∂Ω), looking at the dependence of the best constant and the extremals on p and q. We prove that there exists a uniform bound (independent of (p, q)) for the best constant if and only if (p, q) lies far from (N, ∞). Also we study some limit cases, q...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Bonder, J.F
Otros Autores: Rossi, J.D, Ferreira, R.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2003
Acceso en línea:Registro en Scopus
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04475caa a22005297a 4500
001 PAPER-21391
003 AR-BaUEN
005 20230518205251.0
008 190411s2003 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-29744461102 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
100 1 |a Bonder, J.F. 
245 1 0 |a Uniform bounds for the best Sobolev trace constant 
260 |c 2003 
270 1 0 |m Bonder, J.F.; Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina; email: jfbonder@dm.uba.ar 
506 |2 openaire  |e Política editorial 
504 |a Babuska, I., Osborn, J., Eigenvalue problems (1991) Handbook of Numer. Anal., 2. , North-Holland 
504 |a Calderon, A.P., Intennedzate sapces and interpolation (1964) Stud. Math., 24, pp. 113-190 
504 |a Calderon, C.P., Milman, M., Interpolation of Sobolev spaces. The real method (1983) Indiana Univ. Math. J., 32, pp. 801-809 
504 |a Del Pino, M., Flores, C., Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains (2001) Communications in Partial Differential Equations, 26 (11-12), pp. 2189-2210 
504 |a Escobar, J.F., Sharp constant in a Sobolev trace inequality (1988) Indiana Univ. Math. J., 37, pp. 687-698 
504 |a Escobar, J.F., Uniqueness theorems on conformal deformations of metrics, Sobolev inequalities, and an eigenvalue estimate (1990) Comm. Pure Appl. Math., 43, pp. 857-883 
504 |a Escobar, J.F., Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature (1992) Ann. of Math., 136, pp. 1-50 
504 |a Bonder, J.F., Rossi, J.D., Existence results for the p-Laplacian with nonlinear boundary conditions (2001) Journal of Mathematical Analysis and Applications, 263 (1), pp. 195-223. , DOI 10.1006/jmaa.2001.7609 
504 |a Fernández Bonder, J., Rossi, J.D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains (2002) Comm. Pure Appl. Anal., 1 (3), pp. 359-378 
504 |a Gilbarg, D., Ttudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer-Verlag, NY 
504 |a Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Rat. Mech. Anal., 148, pp. 89-105 
504 |a Martinez, S., Rossi, J.D., Isolation and simplicity for the first eigenvalue of the p-Laplacian with a nonlinear boundary condition (2002) Abst. Appl. Anal., 7 (5), pp. 287-293 
504 |a Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations (1984) J. Differential Equations, 51, pp. 126-150 
504 |a Vazquez, J.L., A strong mazimum principle for some quasilinear elliptic equations (1984) Appl. Math. Optim., 12 (3), pp. 191-202 
520 3 |a We study the Sobolev trace embedding W1,p (Ω) → Lq(∂Ω), looking at the dependence of the best constant and the extremals on p and q. We prove that there exists a uniform bound (independent of (p, q)) for the best constant if and only if (p, q) lies far from (N, ∞). Also we study some limit cases, q = ∞ with p > N or p = ∞ with 1 ≤ q ≤ ∞.  |l eng 
593 |a Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria (1428), Buenos Aires, Argentina 
593 |a Departamento de Matemática, Universidad Católica, Casilla 306, correo 22, Santiago, Chile 
593 |a Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain 
593 |a Departamento de Matemticas, U. Carlos III de Madrid, 28911 Legans, Spain 
690 1 0 |a NONLINEAR BOUNDARY CONDITIONS 
690 1 0 |a P-LAPLACIAN 
690 1 0 |a SOBOLEV TRACE CONSTANTS 
700 1 |a Rossi, J.D. 
700 1 |a Ferreira, R. 
773 0 |d 2003  |g v. 3  |h pp. 181-192  |k n. 2  |p Adv. Nonlinear Stud.  |x 15361365  |t Advanced Nonlinear Studies 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-29744461102&partnerID=40&md5=e79828c44cdfcecc5820d25c67d9c051  |y Registro en Scopus 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_15361365_v3_n2_p181_Bonder  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15361365_v3_n2_p181_Bonder  |y Registro en la Biblioteca Digital 
961 |a paper_15361365_v3_n2_p181_Bonder  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
999 |c 82344