Processing of sensory signals by a non-spiking neuron in the leech

The non-spiking neurons 151 are present as bilateral pairs in each midbody ganglion of the leech nervous system and they are electrically coupled to several motorneurons. Intracellular recordings were used to investigate how these neurons process input from the mechanosensory P neurons in isolated g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Marín-Burgin, A.
Otros Autores: Szczupak, L.
Formato: Capítulo de libro
Lenguaje:Inglés
Publicado: 2000
Acceso en línea:Registro en Scopus
DOI
Handle
Registro en la Biblioteca Digital
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08996caa a22010697a 4500
001 PAPER-2127
003 AR-BaUEN
005 20230518203131.0
008 190411s2000 xx ||||fo|||| 00| 0 eng|d
024 7 |2 scopus  |a 2-s2.0-0033662508 
024 7 |2 cas  |a Poisons; Strychnine, 57-24-9 
040 |a Scopus  |b spa  |c AR-BaUEN  |d AR-BaUEN 
030 |a JCPAD 
100 1 |a Marín-Burgin, A. 
245 1 0 |a Processing of sensory signals by a non-spiking neuron in the leech 
260 |c 2000 
270 1 0 |m Marin-Burgin, A.; Physiologisches Institut, Rontgenring 9, 97070 Wurzburg, Germany 
506 |2 openaire  |e Política editorial 
504 |a Bullock, T.H., (1993) How do brains work?, , Birkhauser, Boston 
504 |a Burrows, M., The control of sets of motoneurones by local interneurones in the locust (1980) J Physiol (Lond), 298, pp. 213-233 
504 |a Burrows, M., Processing of mechanosensory signals in local reflex pathways of locust (1989) J Exp Biol, 146, pp. 209-227 
504 |a Burrows, M., Local circuits for the control of leg movements in an insect (1992) TINS, 15, pp. 226-232 
504 |a Burrows, M., Siegler, M.V.S., Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust (1978) J Physiol (Lond), 285, pp. 231-255 
504 |a Burrows, M., Laurent, G.J., Field, L.H., Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg (1988) J Neurosci, 8, pp. 3085-3093 
504 |a Buschges, A., Schmitz, J., Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects (1991) J Neurobiol, 22, pp. 224-237 
504 |a Carlton, T., McVean, A., The role of touch, pressure and nociceptive mechanoreceptors of the leech in unrestrained behavior (1995) J Comp Physiol, 177, pp. 781-791 
504 |a Debski, E.A., Friesen, W.O., Intracellular stimulation of sensory cells elicits swimming activity in the medicinal leech (1987) J Comp Physiol, 160, pp. 447-457 
504 |a Iscla, I.R., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J Comp Physiol, 184, pp. 233-241 
504 |a Kristan, W.B.J., Sensory and motor neurones responsible for the local bending response in leeches (1982) J Exp Biol, 96, pp. 161-180 
504 |a Laurent, G.J., Burrows, M., Direct excitation of nonspiking local interneurones by exteroceptors underlies tactile reflexes in the locust (1988) J Comp Physiol, 162, pp. 563-572 
504 |a Lockery, S.R., Kristan, W.B.J., Distributed processing of sensory information in the leech. I. Input-output relations of the local bending reflex (1990) J Neurosci, 10, pp. 1811-1815 
504 |a Manor, Y., Temporal dynamics of grades synaptic transmission in the lobster stomatogastric ganglion (1997) J Neurosci, 15, pp. 5610-5621 
504 |a Marin Burgin, A., Filevich, O., Szczupak, L., A non-spiking interneuron regulates the sensory input onto the serotonergic neurons in the leech (1999) Soc Neurosci Abstr, 645, p. 3 
504 |a McAdoo, D.J., Coggeshall, R.E., Gas chromatographic-mass sprectrometric analysis of biogenic amines in identified neurons and tissues of Hirudo medicinalis (1976) J Neurochem, 26, pp. 163-167 
504 |a Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 
504 |a Nicholls, J.G., Baylor, D.A., Specific modalities and receptive fields of sensory neurons in CNS of the leech (1968) J Neurophysiol, 31, pp. 740-756 
504 |a Nicholls, J.G., Purves, D., Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech (1970) J Physiol (Lond), 209, pp. 647-667 
504 |a Pearson, K.G., Fourtner, C.R., Non-spiking interneurons in walking system of the cockroach (1975) J Neurophysiol, 38, pp. 33-52 
504 |a Shaw, B.K., Kristan, W.B.J., The whole-body shortening reflex of the medicinal leech: Motor pattern, sensory basis, and interneuronal pathway (1995) J Comp Physiol, 177, pp. 667-681 
504 |a Wadepuhl, M., Depression of excitatory motorneurones by a single neurone in the leech central nervous system (1989) J Exp Biol, 143, pp. 509-527 
504 |a Wassle, H., Boycott, B.B., Functional architecture of the mammalian retina (1991) Physiol Rev, 71, pp. 447-480 
504 |a Wittenberg, G., Kristan, W.B., Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output (1992) J Neurophysiol, 68, pp. 1683-1692 
520 3 |a The non-spiking neurons 151 are present as bilateral pairs in each midbody ganglion of the leech nervous system and they are electrically coupled to several motorneurons. Intracellular recordings were used to investigate how these neurons process input from the mechanosensory P neurons in isolated ganglia. Induction of spike trains (15 Hz) in single P cells evoked responses that combined depolarizing and hyperpolarizing phases in cells 151. The phasic depolarizations, transmitted through spiking interneurons, reversed at around -20 mV. The hyperpolarization had two components, both reversing at around -65 mV, and which were inhibited by strychnine (10 μmol l-1). The faster component was transmitted through spiking interneurons and the slower component through a direct P-151 interaction. Short trains (< 400 ms) of P cell spikes (15 Hz) evoked the phasic depolarizations superimposed on the hyperpolarization, while long spike trains (> 500 ms) produced a succession of depolarizations that masked the hyperpolarizing phase. The amplitude and duration of the hyperpolarization reached their maximum at the initial spikes in a train, while the depolarizations persisted throughout the duration of the stimulus train. Both phases of the response were relatively unaffected by the spike frequency (5-25 Hz). The non-spiking neurons 151 processed the sensory signals in the temporal rather than in the amplitude domain.  |l eng 
536 |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica 
536 |a Detalles de la financiación: Human Frontier Science Program 
536 |a Detalles de la financiación: Fundación Antorchas 
536 |a Detalles de la financiación: Acknowledgements The authors wish to thank Irene Iscla, Oscar Filevich, Lorena Rela, and Dr Daniel Tomsic for critical reading of this manuscript and Gabriela Olivari for editing the text. This work was made possible by the financial support of Fundación Antorchas, Agencia de Promoción Cientṍ fica y Tecnológica, Human Frontier for Science Program and Fogarty International Center to L.S. 
593 |a Laboratorio de Fisiologia y Biologia Molecular, Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina 
593 |a Physiologisches Institut, Rontgenring 9, 97070 Wurzburg, Germany 
690 1 0 |a LEECH 
690 1 0 |a MECHANOSENSORY 
690 1 0 |a NON-SPIKING 
690 1 0 |a SENSORY PROCESSING 
690 1 0 |a STRYCHNINE 
690 1 0 |a POISON 
690 1 0 |a STRYCHNINE 
690 1 0 |a ACTION POTENTIAL 
690 1 0 |a ANIMAL 
690 1 0 |a ARTICLE 
690 1 0 |a CYTOLOGY 
690 1 0 |a DRUG EFFECT 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a GANGLION 
690 1 0 |a INTERNEURON 
690 1 0 |a LEECH 
690 1 0 |a MECHANORECEPTOR 
690 1 0 |a MOVEMENT (PHYSIOLOGY) 
690 1 0 |a PHYSIOLOGY 
690 1 0 |a SENSORY NERVE CELL 
690 1 0 |a SYNAPSE 
690 1 0 |a ACTION POTENTIALS 
690 1 0 |a ANIMALS 
690 1 0 |a ELECTROPHYSIOLOGY 
690 1 0 |a GANGLIA, INVERTEBRATE 
690 1 0 |a INTERNEURONS 
690 1 0 |a LEECHES 
690 1 0 |a MECHANORECEPTORS 
690 1 0 |a MOVEMENT 
690 1 0 |a NEURONS, AFFERENT 
690 1 0 |a POISONS 
690 1 0 |a STRYCHNINE 
690 1 0 |a SYNAPSES 
700 1 |a Szczupak, L. 
773 0 |d 2000  |g v. 186  |h pp. 989-997  |k n. 10  |p J. Comp. Physiol. A Sens. Neural. Behav. Physiol.  |x 03407594  |w (AR-BaUEN)CENRE-233  |t Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology 
856 4 1 |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033662508&doi=10.1007%2fs003590000152&partnerID=40&md5=c0ba9e3e26f4ec0741f8e8ab4947b3ce  |y Registro en Scopus 
856 4 0 |u https://doi.org/10.1007/s003590000152  |y DOI 
856 4 0 |u https://hdl.handle.net/20.500.12110/paper_03407594_v186_n10_p989_MarinBurgin  |y Handle 
856 4 0 |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v186_n10_p989_MarinBurgin  |y Registro en la Biblioteca Digital 
961 |a paper_03407594_v186_n10_p989_MarinBurgin  |b paper  |c PE 
962 |a info:eu-repo/semantics/article  |a info:ar-repo/semantics/artículo  |b info:eu-repo/semantics/publishedVersion 
963 |a VARI 
999 |c 63080