Processing of sensory signals by a non-spiking neuron in the leech
The non-spiking neurons 151 are present as bilateral pairs in each midbody ganglion of the leech nervous system and they are electrically coupled to several motorneurons. Intracellular recordings were used to investigate how these neurons process input from the mechanosensory P neurons in isolated g...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Capítulo de libro |
| Lenguaje: | Inglés |
| Publicado: |
2000
|
| Acceso en línea: | Registro en Scopus DOI Handle Registro en la Biblioteca Digital |
| Aporte de: | Registro referencial: Solicitar el recurso aquí |
| LEADER | 08996caa a22010697a 4500 | ||
|---|---|---|---|
| 001 | PAPER-2127 | ||
| 003 | AR-BaUEN | ||
| 005 | 20230518203131.0 | ||
| 008 | 190411s2000 xx ||||fo|||| 00| 0 eng|d | ||
| 024 | 7 | |2 scopus |a 2-s2.0-0033662508 | |
| 024 | 7 | |2 cas |a Poisons; Strychnine, 57-24-9 | |
| 040 | |a Scopus |b spa |c AR-BaUEN |d AR-BaUEN | ||
| 030 | |a JCPAD | ||
| 100 | 1 | |a Marín-Burgin, A. | |
| 245 | 1 | 0 | |a Processing of sensory signals by a non-spiking neuron in the leech |
| 260 | |c 2000 | ||
| 270 | 1 | 0 | |m Marin-Burgin, A.; Physiologisches Institut, Rontgenring 9, 97070 Wurzburg, Germany |
| 506 | |2 openaire |e Política editorial | ||
| 504 | |a Bullock, T.H., (1993) How do brains work?, , Birkhauser, Boston | ||
| 504 | |a Burrows, M., The control of sets of motoneurones by local interneurones in the locust (1980) J Physiol (Lond), 298, pp. 213-233 | ||
| 504 | |a Burrows, M., Processing of mechanosensory signals in local reflex pathways of locust (1989) J Exp Biol, 146, pp. 209-227 | ||
| 504 | |a Burrows, M., Local circuits for the control of leg movements in an insect (1992) TINS, 15, pp. 226-232 | ||
| 504 | |a Burrows, M., Siegler, M.V.S., Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust (1978) J Physiol (Lond), 285, pp. 231-255 | ||
| 504 | |a Burrows, M., Laurent, G.J., Field, L.H., Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg (1988) J Neurosci, 8, pp. 3085-3093 | ||
| 504 | |a Buschges, A., Schmitz, J., Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects (1991) J Neurobiol, 22, pp. 224-237 | ||
| 504 | |a Carlton, T., McVean, A., The role of touch, pressure and nociceptive mechanoreceptors of the leech in unrestrained behavior (1995) J Comp Physiol, 177, pp. 781-791 | ||
| 504 | |a Debski, E.A., Friesen, W.O., Intracellular stimulation of sensory cells elicits swimming activity in the medicinal leech (1987) J Comp Physiol, 160, pp. 447-457 | ||
| 504 | |a Iscla, I.R., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J Comp Physiol, 184, pp. 233-241 | ||
| 504 | |a Kristan, W.B.J., Sensory and motor neurones responsible for the local bending response in leeches (1982) J Exp Biol, 96, pp. 161-180 | ||
| 504 | |a Laurent, G.J., Burrows, M., Direct excitation of nonspiking local interneurones by exteroceptors underlies tactile reflexes in the locust (1988) J Comp Physiol, 162, pp. 563-572 | ||
| 504 | |a Lockery, S.R., Kristan, W.B.J., Distributed processing of sensory information in the leech. I. Input-output relations of the local bending reflex (1990) J Neurosci, 10, pp. 1811-1815 | ||
| 504 | |a Manor, Y., Temporal dynamics of grades synaptic transmission in the lobster stomatogastric ganglion (1997) J Neurosci, 15, pp. 5610-5621 | ||
| 504 | |a Marin Burgin, A., Filevich, O., Szczupak, L., A non-spiking interneuron regulates the sensory input onto the serotonergic neurons in the leech (1999) Soc Neurosci Abstr, 645, p. 3 | ||
| 504 | |a McAdoo, D.J., Coggeshall, R.E., Gas chromatographic-mass sprectrometric analysis of biogenic amines in identified neurons and tissues of Hirudo medicinalis (1976) J Neurochem, 26, pp. 163-167 | ||
| 504 | |a Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY | ||
| 504 | |a Nicholls, J.G., Baylor, D.A., Specific modalities and receptive fields of sensory neurons in CNS of the leech (1968) J Neurophysiol, 31, pp. 740-756 | ||
| 504 | |a Nicholls, J.G., Purves, D., Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech (1970) J Physiol (Lond), 209, pp. 647-667 | ||
| 504 | |a Pearson, K.G., Fourtner, C.R., Non-spiking interneurons in walking system of the cockroach (1975) J Neurophysiol, 38, pp. 33-52 | ||
| 504 | |a Shaw, B.K., Kristan, W.B.J., The whole-body shortening reflex of the medicinal leech: Motor pattern, sensory basis, and interneuronal pathway (1995) J Comp Physiol, 177, pp. 667-681 | ||
| 504 | |a Wadepuhl, M., Depression of excitatory motorneurones by a single neurone in the leech central nervous system (1989) J Exp Biol, 143, pp. 509-527 | ||
| 504 | |a Wassle, H., Boycott, B.B., Functional architecture of the mammalian retina (1991) Physiol Rev, 71, pp. 447-480 | ||
| 504 | |a Wittenberg, G., Kristan, W.B., Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output (1992) J Neurophysiol, 68, pp. 1683-1692 | ||
| 520 | 3 | |a The non-spiking neurons 151 are present as bilateral pairs in each midbody ganglion of the leech nervous system and they are electrically coupled to several motorneurons. Intracellular recordings were used to investigate how these neurons process input from the mechanosensory P neurons in isolated ganglia. Induction of spike trains (15 Hz) in single P cells evoked responses that combined depolarizing and hyperpolarizing phases in cells 151. The phasic depolarizations, transmitted through spiking interneurons, reversed at around -20 mV. The hyperpolarization had two components, both reversing at around -65 mV, and which were inhibited by strychnine (10 μmol l-1). The faster component was transmitted through spiking interneurons and the slower component through a direct P-151 interaction. Short trains (< 400 ms) of P cell spikes (15 Hz) evoked the phasic depolarizations superimposed on the hyperpolarization, while long spike trains (> 500 ms) produced a succession of depolarizations that masked the hyperpolarizing phase. The amplitude and duration of the hyperpolarization reached their maximum at the initial spikes in a train, while the depolarizations persisted throughout the duration of the stimulus train. Both phases of the response were relatively unaffected by the spike frequency (5-25 Hz). The non-spiking neurons 151 processed the sensory signals in the temporal rather than in the amplitude domain. |l eng | |
| 536 | |a Detalles de la financiación: Agencia Nacional de Promoción Científica y Tecnológica | ||
| 536 | |a Detalles de la financiación: Human Frontier Science Program | ||
| 536 | |a Detalles de la financiación: Fundación Antorchas | ||
| 536 | |a Detalles de la financiación: Acknowledgements The authors wish to thank Irene Iscla, Oscar Filevich, Lorena Rela, and Dr Daniel Tomsic for critical reading of this manuscript and Gabriela Olivari for editing the text. This work was made possible by the financial support of Fundación Antorchas, Agencia de Promoción Cientṍ fica y Tecnológica, Human Frontier for Science Program and Fogarty International Center to L.S. | ||
| 593 | |a Laboratorio de Fisiologia y Biologia Molecular, Departamento de Biologia, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428, Argentina | ||
| 593 | |a Physiologisches Institut, Rontgenring 9, 97070 Wurzburg, Germany | ||
| 690 | 1 | 0 | |a LEECH |
| 690 | 1 | 0 | |a MECHANOSENSORY |
| 690 | 1 | 0 | |a NON-SPIKING |
| 690 | 1 | 0 | |a SENSORY PROCESSING |
| 690 | 1 | 0 | |a STRYCHNINE |
| 690 | 1 | 0 | |a POISON |
| 690 | 1 | 0 | |a STRYCHNINE |
| 690 | 1 | 0 | |a ACTION POTENTIAL |
| 690 | 1 | 0 | |a ANIMAL |
| 690 | 1 | 0 | |a ARTICLE |
| 690 | 1 | 0 | |a CYTOLOGY |
| 690 | 1 | 0 | |a DRUG EFFECT |
| 690 | 1 | 0 | |a ELECTROPHYSIOLOGY |
| 690 | 1 | 0 | |a GANGLION |
| 690 | 1 | 0 | |a INTERNEURON |
| 690 | 1 | 0 | |a LEECH |
| 690 | 1 | 0 | |a MECHANORECEPTOR |
| 690 | 1 | 0 | |a MOVEMENT (PHYSIOLOGY) |
| 690 | 1 | 0 | |a PHYSIOLOGY |
| 690 | 1 | 0 | |a SENSORY NERVE CELL |
| 690 | 1 | 0 | |a SYNAPSE |
| 690 | 1 | 0 | |a ACTION POTENTIALS |
| 690 | 1 | 0 | |a ANIMALS |
| 690 | 1 | 0 | |a ELECTROPHYSIOLOGY |
| 690 | 1 | 0 | |a GANGLIA, INVERTEBRATE |
| 690 | 1 | 0 | |a INTERNEURONS |
| 690 | 1 | 0 | |a LEECHES |
| 690 | 1 | 0 | |a MECHANORECEPTORS |
| 690 | 1 | 0 | |a MOVEMENT |
| 690 | 1 | 0 | |a NEURONS, AFFERENT |
| 690 | 1 | 0 | |a POISONS |
| 690 | 1 | 0 | |a STRYCHNINE |
| 690 | 1 | 0 | |a SYNAPSES |
| 700 | 1 | |a Szczupak, L. | |
| 773 | 0 | |d 2000 |g v. 186 |h pp. 989-997 |k n. 10 |p J. Comp. Physiol. A Sens. Neural. Behav. Physiol. |x 03407594 |w (AR-BaUEN)CENRE-233 |t Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology | |
| 856 | 4 | 1 | |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033662508&doi=10.1007%2fs003590000152&partnerID=40&md5=c0ba9e3e26f4ec0741f8e8ab4947b3ce |y Registro en Scopus |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s003590000152 |y DOI |
| 856 | 4 | 0 | |u https://hdl.handle.net/20.500.12110/paper_03407594_v186_n10_p989_MarinBurgin |y Handle |
| 856 | 4 | 0 | |u https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v186_n10_p989_MarinBurgin |y Registro en la Biblioteca Digital |
| 961 | |a paper_03407594_v186_n10_p989_MarinBurgin |b paper |c PE | ||
| 962 | |a info:eu-repo/semantics/article |a info:ar-repo/semantics/artículo |b info:eu-repo/semantics/publishedVersion | ||
| 963 | |a VARI | ||
| 999 | |c 63080 | ||